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We describe the design for a scalable, solid-state quantum-information-processing architecture based on the
integration of GHz-frequency nanomechanical resonators with Josephson tunnel junctions, which has the
potential for demonstrating a variety of single- and multiqubit operations critical to quantum computation. The
computational qubits are eigenstates of large-area, current-biased Josephson junctions, manipulated and mea-
sured using strobed external circuitry. Two or more of thesephasequbits are capacitively coupled to a
high-quality-factor piezoelectric nanoelectromechanical disk resonator, which forms the backbone of our ar-
chitecture, and which enables coherent coupling of the qubits. The integrated system is analogous to one or
more few-level atomssthe Josephson junction qubitsd in an electromagnetic cavitysthe nanomechanical reso-
natord. However, unlike existing approaches using atoms in electromagnetic cavities, here we can individually
tune the level spacing of the “atoms” and control their “electromagnetic” interaction strength. We show
theoretically that quantum states prepared in a Josephson junction can be passed to the nanomechanical
resonator and stored there, and then can be passed back to the original junction or transferred to another with
high fidelity. The resonator can also be used to produce maximally entangled Bell states between a pair of
Josephson junctions. Many such junction-resonator complexes can be assembled in a hub-and-spoke layout,
resulting in a large-scale quantum circuit. Our proposed architecture combines desirable features of both
solid-state and cavity quantum electrodynamics approaches, and could make quantum-information processing
possible in a scalable, solid-state environment.

DOI: 10.1103/PhysRevA.71.032311 PACS numberssd: 03.67.Lx, 85.25.Cp, 85.85.1j

I. INTRODUCTION

The lack of easily fabricated physical qubit elements, hav-
ing both sufficiently long quantum-coherence lifetimes and
the means for producing and controlling their entanglement,
remains the principal roadblock to building a large-scale
quantum computer. Superconducting devices have been un-
derstood for several years to be natural candidates for quan-
tum computation, given that they exhibit robust macroscopic
quantum behaviorf1g. Demonstrations of long-lived Rabi os-
cillations in current-biased Josephson tunnel junctionsf2,3g
and of both Rabi oscillations and Ramsey fringes in a
Cooper-pair boxf4–6g have generated significant new inter-
est in the potential for superconductor-based quantum com-
putation f7,8g. Several additional experimental accomplish-
ments have followedf9–16g, including the impressive
demonstration of controlled-NOT logic with charge qubits
f12g, and a large body of theoretical work is beginning to
address these and related systemsf15,17–51g. Coherence
timestw up to 5ms have been reported in the current-biased
devices f2g, with corresponding quantum-coherent quality
factors Qw;twDE/" of the order of 105, indicating that
these systems should be able to perform many logical opera-
tions during the available coherence lifetimef52g. HereDE
is the qubit energy-level separation, which was 68meV in
the experiment of Ref.f2g.

In this paper, we expand on our earlier proposal suggest-
ing that GHz-frequency nanoelectromechanical resonators
can be used to coherently couple two or more current-biased
Josephson junctionsJJd devices together to make a flexible

and scalable solid-state quantum-information-processing ar-
chitecturef51g. The computational qubits are taken to be the
energy eigenstates of the JJs, which are to be individually
prepared, controlled, and measured using the external cir-
cuitry developed by Martiniset al. f3g. These superconduct-
ing phasequbits are capacitively coupled to a high-quality-
factor piezoelectric dilatational disk resonator, cooled on a
dilution refrigerator to the quantum limit, which forms the
backbone of our architecture. We shall show that the inte-
grated system is analogous to one or more few-level atoms
sthe JJsd in an electromagnetic cavitysthe resonatord. How-
ever, here we can individually tunein situ the energy level
spacing of each “atom,” and control the “electromagnetic”
interaction strength. This analogy makes it clear that our de-
sign is sufficiently flexible to be able to carry out essentially
any operation that can be done using other architectures, pro-
vided that there is enough coherence. Many of our results
will apply to other architectures that are similar to atoms in a
cavity.

Several investigators have proposed the use ofLC reso-
natorsf17–26g, superconducting cavitiesf15,27–29g, or other
types of oscillatorsf30–32g, to couple JJs together. We note
that although harmonic oscillators are ineffective as compu-
tational qubits, because the lowest pair of levels cannot be
frequency selected by an external driving force, they are
quite desirable as bus qubits or coupling elements. Early on,
Shnirmanet al. f17g suggested an architecture consisting of
several superconducting charge qubits in parallel with an in-
ductor. The JJs are themselves out of resonance with each
other and hence weakly coupled, and the resultingLC reso-
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natorsthe capacitance coming from the junction geometryd is
also used well below its resonant frequency. An interesting
modification of this design couples the small island to the
external circuit through a pair of parallel JJs, which allows
the Josephson coupling energy to be varied, using an external
magnetic fieldf18g. To date, however, the only coupled su-
perconducting qubits demonstrated experimentally have been
the capacitively coupled charge qubits of Peshkinet al. f9g
and Yamamotoet al. f12g, and the capacitively coupled
phase qubits of Berkleyet al. f11g.

Resonator-based coupling schemes, such as the one pro-
posed here, have the advantage of additional functionality
resulting from the ability to tune the qubits relative to the
resonator frequency, as well as to each other. We shall show
that by tuning the JJs in and out of resonance with the nano-
mechanical resonator, qubit states prepared in a junction can
be passed to the resonator and stored there, and can later be
passed back to the original junction or transferred to another
JJ with high fidelity. The resonator can also be used to pro-
duce controlled entangled states between a pair of JJs. Alter-
natively, when both qubits are detuned from the resonator,
the resonator produces a weakshigher-orderd “dispersive”
qubit coupling similar to that of a capacitor. The use of me-
chanical resonators to mediate multiqubit operations in JJ-
based quantum-information processors has notsto the best of
our knowledged been considered previously, but our proposal
builds on the interesting recent theoretical work by Armour
et al. f33,34g and Irishet al. f35g on the entanglement of a
nanoelectromechanical resonator with a single Cooper-pair
box. In fact, there is currently a big effort to push a variety of
nanomechanical systems to the quantum limitf53–55g.

In the next section, we recall the basic properties of large-
area, current-biased JJs. In Sec. III, we discuss our proposed
architecture, and construct a simple model Hamiltonian to
describe it. State preparation and readout have been de-
scribed elsewhere and will only be discussed briefly. The
properties of the nanomechanical resonator are also de-
scribed here in detail. In the remainder of the paper, we
discuss a variety of elementary single- and multiqubit opera-
tions central to quantum computation: In Sec. IV, we show
how a qubit state prepared in a JJ can be passed to the na-
nomechanical resonator, stored there coherently, and later
passed back to the original junction or transferred to another
JJ. Two-junction entanglement, mediated by the resonator, is
studied in Sec. V. In Sec. VI, we show how our architecture
can be extended to make a large-scale quantum circuit. Our
conclusions are given in Sec. VII. Several immediate exten-
sions of the present work, including the development of pro-
tocols for universal two-qubit quantum logic, are currently in
progress and will be discussed in future publications.

II. THE CURRENT-BIASED JOSEPHSON JUNCTION

Our architecture relies on the use of large-area JJs, biased
with a currentIb, which can be quasistatic or have oscillatory
components. The junctions have a large capacitanceC stypi-
cally 1–50 pFd and critical currentI0 sin the 10–150mA
ranged so that the largest relevant energy scale in the system
is the Josephson coupling energy

EJ ;
"I0

2e
, s1d

wheree is the magnitude of the electron charge. In contrast,
the Cooper-pair charging energy

Ec ;
s2ed2

2C
s2d

is small compared withEJ, and is also usually smaller than
the thermal energykBT. For example,

EJ = 2.05 meV3 I0fmAg and Ec =
320 neV

CfpFg
, s3d

whereI0fmAg andCfpFg are the critical current and junction
capacitance in microamperes and picofarads, respectively.

A. Semiclassical junction dynamics

The low-energy dynamics of a JJ can be understood as
following from the equivalent circuit model shown in the
inset to Fig. 1, known as the resistively and capacitively
shunted junction modelf56,57g, where the “ideal” Josephson
element controls the superconducting componentIs of the
total electrical currentIs+ In in accordance with the well-
known Josephson equations

Is = I0 sind and
dd

dt
=

2eV

"
. s4d

HereIs is the supercurrent flowing through the ideal Joseph-
son junction element,d is the difference between the phases
of the sspatially uniformd superconducting order parameters
on each side of the junction, andV is the voltage across the
junction. In is the nonsuperconducting part of the current,
comprising the quasiparticle currents at non-zero voltage,
and any currents flowing through the parallel external circuit
impedance, the two in parallel most simply modeled as a
linear resistorR. Equating the sum of the currents flowing
through the capacitor, ideal junction, and resistor, toIb, leads
to

FIG. 1. Effective potentialUsdd for dimensionless bias current
s; Ib/ I0 equal to 0.1, plotted in units ofEJ. Inset: Equivalent-circuit
model for a current-biased Josephson junction. A capacitanceC and
resistanceR are in parallel with an “ideal” Josephson element, rep-
resented by a cross and having critical currentI0. A bias currentIb

is driven through the circuit.
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"2

2Ec

d2d

dt2
+

"2

4e2R

dd

dt
+ EJssind − sd = 0, s5d

wheres; Ib/ I0 is the dimensionless bias current. By rewrit-
ing Eq. s5d in the equivalent form

M
d2d

dt2
= −

dU

dd
− h

dd

dt
, s6d

it can be interpreted as the equation of motion for a particle
of “mass”

M ;
"2

2Ec
s7d

moving in an effective potential

Usdd ; − EJscosd + sdd, s8d

and in the presence of velocity-dependent dissipation char-
acterized by a friction coefficienth;"2/4e2R. Note thatM
actually has dimensions of mass3 length2.

The potentialUsdd, which resembles a tilted washboard,
is shown in the main panel of Fig. 1 for a dimensionless bias
current ofs=0.1. The zero-voltage state of the junction cor-
responds to the particle or phase variable being trapped in
one of the metastable minima present whens,1, and the
finite-voltage state corresponds to the phase variable running
down the washboard potential. In what follows, we will as-
sume 0øs,1, and without loss of generality we can also
assume that 0ød,2p.

The potentialUsdd reaches its minimum and maximum
values in the domain 0ød,2p at dmin=arcsins and dmax
=p−arcsins. The depthDU;Usdmaxd−Usdmind of the po-
tential well is

DU = 2EJfÎ1 − s2 − sarccossg, s9d

which vanishes as

DU → 4Î2

3
EJs1 − sd3/2 s10d

in the s→1− limit.
The curvatureU9sdd at the minimum of the potential is

used to define the junction’s plasma frequency,

vp ;ÎU9sdmind
M

= vp0s1 − s2d1/4, s11d

which is the frequency of small oscillations ofd aboutdmin.
HereM is the effective mass defined in Eq.s7d, and

vp0 =Î2eI0
"C

=
Î2EcEJ

"
s12d

is the plasma frequency at zero bias.
The dependence of the barrier height and plasma fre-

quency on bias current are plotted in Fig. 2. For junctions
appropriate for quantum computation,vp0/2p is typically in
the range of 1–100 GHz. The barrier height during state
preparation and readout is usually adjusted so thatDU /"vp
is between 3 and 5, but, as we shall discuss below, is it

advantageous to keeps smaller during actual quantum com-
putation.

The effect of dissipation, caused in the resistively and
capacitively shunted junction model by the resistanceR, can
be characterized by the number of oscillations at the plasma
frequency during the relaxation timeRC, or vpRC. In what
follows, we will assume that dynamics is highly under-
damped, withvpRC@1.

B. Quantizing the low-energy junction dynamics:
The phase qubit

When the thermal energykBT and energy decay width
" /RC are both smaller than"vp, quantum fluctuations ofd
become important, and the JJ has to be treated quantum me-
chanically. This limit was studied in the 1980s as an example
of a single macroscopic degree of freedom—the difference
between phases of order parameters—that nonetheless be-
haves quantum mechanicallyf58–61g. This is also the re-
gime of current interest for applications to quantum comput-
ing.

When dissipation is absent, the low-energy dynamics can

be quantized by introducing a LagrangianLJ=
1
2Mḋ2−U and

canonical momentumP;]L /]ḋ=Mḋ associated with theh
=0 limit of Eq. s6d. According to the Josephson equations,P
is proportional to the chargeQ or to the number of Cooper
pairs Q /2e on the capacitor according toP="Q /2e. The
classical Hamiltonian isP2/2M +U. To quantize the system,
we let P=−i"sd/ddd, so thatfd ,Pg= i". Then the quantized
Hamiltonian is

HJ = − Ec
d2

dd2 + Usdd, s13d

and the dynamics is governed by the Schrödinger equation
i"]tc=HJc. BecauseU depends ons, which itself depends
on t, HJ is generally time-dependent.

FIG. 2. Barrier height and plasma frequency as a function of the
dimensionless bias currents. HereDU0;2EJ is the barrier height at
zero bias, andvp0 is the zero-bias plasma frequency defined in Eq.
s12d.
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Naively, the stationary states and energies of the JJ with
fixed s follow straightforwardly from the one-dimensional
eigenvalue problem

HJcmsdd = emcmsdd, m= 0,1,2, . . . . s14d

However, a careful analysisf62g shows that in the presence
of any finite Ohmic dissipationsnonzerohd, quantum coher-
ence between the different wells inUsdd is destroyed. This,
in fact, justifies the use of the washboard potential in the first
place: Strictly speaking,d is a periodic variable, withd
physically equivalent tod+2p. In what follows, we will
work with stationary states associated with a single potential
minimum sin the domain 0ød,2pd. It is these stationary
states that are of interest to quantum computation.

Whens=0, the junction contains manysof orderÎEJ/Ecd
bound states, the lowest of which are like that of a harmonic
oscillator with level spacing"vp0. The uniform spacing of
the low-lying levels makes them difficult to address indi-
vidually with a classical external driving force. Therefore,
state preparation is carried out withs just below unity, in
which case there are only a few quasibound states
u0l , u1l , u2l , . . . present, and the effective potentialUsdd be-
comes anharmonic and approximately cubic, as illustrated in
Fig. 3. The remarkable 1985 spectroscopic observationf59g
of these quantized states provided the first clear evidence for
the quantum behavior of the macroscopic phase-difference
variabled.

The lowest two eigenstates,u0l and u1l, define aphase
qubit. As stated, in thes&1 limit the potential is anhar-
monic, and the qubit level spacing

DE ; e1 − e0 s15d

is somewhat smaller than"vp, wherevp is thes-dependent
plasma frequency.

The qubit state is also usually measured withs just below
unity: In the absence of thermal or quantum fluctuations,
switching to the finite-voltage state occurs when the bias
current exceedsI0. However, in a real junction, the finite-
voltage state will occur beforeIb reachesI0, either because of
thermal activation over the barrier or by quantum tunneling
through it. Once the phase variable escapes into the con-
tinuum, it runs down the corrugated potential, and a voltage
V of approximately 2Dsc/e develops across the junction,

where Dsc is the superconducting energy gapsDsc
<180 meV for Al junctionsd. The supercurrent component
then oscillates with angular frequency 2eV/"—the ac Jo-
sephson effect. The thermal activation regime has been ex-
plored in detail, for various limits of dissipationf63–65g. For
fixed current bias, the thermal activation rate falls exponen-
tially with inverse temperature, until the dominant escape
mechanism becomes quantum tunnelingf58,60,66–68g. At
temperatures low enough so that quantum tunneling domi-
nates thermal activation, the qubit state can be observed by
measuring the tunneling rate, which is strongly state-
dependent. State preparation and readout are discussed fur-
ther in Sec. III A.

The barrier heightDU and the energy splittingDE
sthrough its dependence onvpd are both strong functions of
the bias currents. The ability to tune the plasma frequency is
one of the current-biased Josephson junction’s great
strengths and weaknesses. It enables the qubit level spacing
DE to be tuned adiabatically into resonance with another
qubit or, as in our approach, with a resonator, but it also
makes the circuit sensitive to bias-current noise, as charac-
terized by the nonzero derivativedvp/ds. Fluctuations ins
will generate noise and hence decoherence in the JJf47g.
Although current methods of state preparation and measure-
ment requires very close to unitystypically near 0.99d,
where dvp/ds is unfortunately large, the information-
processing operations we describe below donot. In our
simulations, we find it convenient to work withs below 0.90.

The energiesem of the lowest four JJ states of the device
used in Ref.f3g, for a range of bias currents, are given in
Table I in units of"vp. We calculate these energies numeri-
cally by diagonalizing the HamiltonianHJ of Eq. s13d in a
basis of harmonic-oscillator eigenfunctions,

fm ; s2mm!Îp,sd−1/2e−j2/2Hmsjd, s16d

that are constructed by making a quadratic approximation

Usdd < Usdmind +
1

2
U9sdmindsd − dmind2 s17d

to Usdd about its minimum atdmin=arcsins. The Hm, m
=0,1,2, . . ., areHermite polynomials, andj;sd−dmind /,s is
a recentered and scaled phase variable, with

FIG. 3. Metastable potential well in the cubic limit, showing the
barrier of heightDU that separates the metastable statesu0l, u1l, and
u2l, from the continuum. This figure applies to the case of bias
currentss just below 1. The lowest two states are separated in
energy byDE.

TABLE I. Energiesem of low-lying eigenstates as a function of
dimensionless bias currents, for the JJ investigated in Ref.f3g, with
parameters I0=21 mA sEJ=43.05 meVd and C=6 pF sEc

=53.33 neVd. Energies below are given in units of"vp and are
measured relative toUsdmind. All dissipation and decoherence ef-
fects are neglected. The first column, labeled bym+ 1

2, gives the
energies of the corresponding harmonic-oscillator eigenfunctions,
which are found to be extremely accurate for smalls.

Junction
stateuml m+ 1

2 s=0.50 s=0.70 s=0.90

m=0 0.500 0.500 0.500 0.500

m=1 1.500 1.500 1.499 1.497

m=2 2.500 2.499 2.498 2.492

m=3 3.500 3.498 3.496 3.485
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,s ;Î "

Mvp
= S2Ec

EJ
D1/4

s1 − s2d−1/8 s18d

giving the characteristic width ind of these eigenfunctions.
We find rapid convergence to the values reported in Table I
as the number of harmonic-oscillator basis states is increased
to include all basis states with energies less thanUsdmaxd.

Dipole-moment matrix elements

xmm8 ; kmudum8l, s19d

which will also be used below, are calculated at biass
=0.90 for the junction used in Ref.f3g, using this same
method. The results are given in Table II. All basis functions
with energies less thanUsdmaxd are included, and the
oscillator-strength sum rulessadapted for this Hamiltioniand
are satisfied to better than 99.999%. Because the eigenfunc-
tions are real, the matrixxmm8 is symmetric, and with an
appropriate choice of overall signs of the eigenfunctions, the
first band of off-diagonal matrix elements can be made posi-
tive. The diagonal elements are also positive here, a conse-
quence of our restriction to the domain 0ød,2p.

The diagonal elementsxmm are very close todmin, regard-
less ofm. In the s=0.90 case considered in Table II,dmin is
about 1.120. The values of off-diagonal elements of the form
xm,m±1 can be understood by noting that for harmonic-
oscillator states, which in this case are close to the exact
eigenfunctions,

E dd fmsdd d fm+1sdd =Îm+ 1

2
,s s20d

with ,s=4.883310−2. The remaining off-diagonal elements,
which result from the small mixing of the harmonic-
oscillator states, are smaller than these by at least an order of
magnitude.

III. ARCHITECTURE AND MODEL HAMILTONIAN

We turn now to the main focus of our paper, the descrip-
tion of a solid-state quantum-information-processing archi-
tecture consisting of a network of current-biased Josephson
junctions coupled to nanoelectromechanical resonators. We
will first consider a single nanomechanical resonator coupled
to one or two JJ qubits; the extension to larger systems will
be considered below in Sec. VI, as well as in future work.

The complete circuit diagram for the two-JJ circuit is
shown in Fig. 4. The two central crossed boxes are the JJs to

be used as phase qubits, and they include the parallel capaci-
tance and resistance shown in the inset to Fig. 1. The disk-
shaped element in the center of the figure is the nanome-
chanical resonator, consisting of a single-crystal piezoelectric
disk sandwiched between two metal electrodes. Applying a
voltage across this element produces an electric field be-
tween the plates, and through the piezoelectric response, a
strain in the crystal. Conversely, strain in the resonator pro-
duces a charge on the electrodes, whose rate of change con-
tributes to the current flowing through a JJ.L andM denote
self- and mutual inductancessM in Fig. 4 is not to be con-
fused with the JJ effective massMd.

A. Single-qubit state preparation, manipulation, and readout

Two of the most critical factors in the design of a success-
ful JJ-based quantum-information processor are high-
impedance bias and high-fidelity readout circuits that do not
disturb the qubit during computation. This is currently a sub-
ject of active experimental investigation, and for concrete-
ness we will assume the bias circuit design developed re-
cently by Martiniset al. f3g, but we will leave the readout
circuitry unspecified. Our architecture can be adapted to im-
proved readout schemes as they become available.

State preparation and readout are performed withIb just
below I0, whereUsdd is anharmonic and shallow. The anhar-
monicity allows preparation from a harmonically varying
bias current, which is tuned to couple to only the lowest two
states. Theu0l state is prepared by waiting for any excited
component to decay. The stateu1l, or a superpositionau0l
+bu1l, is prepared by adding radiofrequencysrfd components
of magnitudesI rf

c and I rf
s to the dc bias current, in the form

f47g

Ibstd = Idc + I rf
c cossvrftd + I rf

s sinsvrftd, s21d

with Idc and I rf
s,c all varying adiabaticallysslow compared

with the frequencyDE/"d. In Eq. s21d, the origin of timet
=0 is taken to be when the beginning of the rf pulse is
applied. Whenvrf is nearly resonant withDE/", the qubit
will undergo Rabi oscillations, allowing the preparation of

TABLE II. Dipole momentsxmm8 between pairs of low-lying JJ
eigenstates for biass=0.90. The entries with dots follow from sym-
metry. Junction parameters are the same as in Table I.

kmudum8l m8=0 m8=1 m8=2 m8=3

m=0 1.12 3.46310−2 −5.86310−4 7.09310−6

m=1 · 1.12 4.89310−2 −1.02310−3

m=2 · · 1.13 6.00310−2

m=3 · · · 1.13
FIG. 4. Two-qubit circuit diagram. The computational qubits are

the two JJs in the center, shown as crossed boxes, each coupled to
one side of the piezoelectric disk resonator. Each crossed box rep-
resents a real JJ, modeled by an ideal Josephson element in parallel
with a resistor and capacitor. The current bias and readout circuits
for each qubit circuit are shown on the left and right sides of the
figure. Note that there is no direct electrical connection between the
two qubits.
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arbitrary linear combinations ofu0l and u1l. The associated
Rabi frequency

Vrf ;ÎSsrfx01EJ

"
D2

+ Svrf −
DE

"
D2

s22d

depends on bothsrf ; I rf / I0 and the detuning. All states on the
Bloch sphere may be prepared in this mannerf47g.

Readout of a JJ stateau0l+bu1l is performed by then
tuning vrf into resonance withse2−e1d /", thereby exciting
the qubit component in theu1l state up tou2l, out of which it
quickly tunnels, thereby resulting in a measurement ofubu.
Martinis et al. f3g have established that a single-shot readout
of the JJ statesu0l and u1l can be performed with 99% and
85% accuracy, respectively.

B. Nanomechanical resonator

The second important element in our design is the use of
piezoelectric nanoelectromechanical disk resonators, with
dilatational-mode frequenciesv0/2p in the 1–50 GHz
range. Piezoelectric dilatational resonators with frequencies
in this range, and quality factorsQ;v0t of the order of 103

at room temperature, have been fabricated from sputtered
AlN f69,70g. Heret is the energy damping time. The radius
of the disk is denoted byR, and b is its thickness. In Ref.
f51g we presented resonance data down to 4.2 K for a
1.8 GHz AlN resonator. The observed low-temperatureQ of
3500 corresponds to an energy lifetimet of more than
300 ns, already sufficient for most of the operations de-
scribed below. This is to be contrasted with the previous
state-of-the-art 1 GHz SiC cantilever beam resonator demon-
strated in 2003f71g, which has aQ nearly an order of mag-
nitude smaller at the same temperature. The unprecedented
performance of our resonator is a consequence of the use of
AlN, which is an intrinsically highQ materialf72g, and the
use of the dilatational vibrational mode.

The dilatational mode of interest is an approximately uni-
form oscillation of the thickness of the disk, which produces
a nearly uniform electric field in a direction perpendicular to
the disk. For a disk with large aspect ratioR/b, the dilata-
tional mode frequency is

v0 ; pv/b, s23d

wherev is a piezoelectrically enhanced sound speed to be
defined below. Although the dilatational mode is not neces-
sarily the fundamental mode of the resonator, we can couple
to it by frequency selection, carefully avoiding the other low-
frequency modes. The frequency in Eq.s23d is that of the
fundamental vibrational mode of a one-dimensional elastic
string with free ends. For simplicity, we will assume that the
dilatational mode frequency given by Eq.s23d holds even if
the aspect ratioR/b is not largef73g.

Quantum mechanically, each vibrational moden of such a
resonator, having angular frequencyvn, is equivalent to a
harmonic oscillator with energy-level spacing"vn. For suf-
ficiently high frequency and low temperature, the mode can
be cooled to its quantum ground state: For example, if
v0/2p=15 GHz, then"v0/kB is about 720 mK. If cooled on
a dilution refrigerator to 100 mK, the probability

p1 = 2 sinhS "v0

2kBT
De−3"v0/2kBT s24d

of thermally occupying the first excitedsone-phonond state,
thereby producing a mixed state instead of the desired pure
phonon ground state, is smaller than 10−3. The mean number
nBs"v0d of phonons present in the dilatational mode at
100 mK, or “excitation level” of the corresponding harmonic
oscillator, is also less than 10−3. HerenBsed is the Bose dis-
tribution function.

In the simulations below, we will assume a nanomechani-
cal disk resonator with the parameters given in Table III. The
thicknessb is chosen to give a dilatational mode frequency
v0/2p of 15 GHz. This frequency is convenient for simula-
tion because, when coupled to a JJ with parameters corre-
sponding to that of Ref.f3g, the bias current

s* ; Î1 − sv0/vp0d4 s25d

required to tune the qubit level spacingDE into resonance
with "v0 is small enough so that the JJ eigenfunctions can be
taken to be harmonic-oscillator states. The resonator radiusR
listed in Table III is chosen to make the junction-resonator
interaction strengthg, to be defined below, 1% of"v0, al-
though we will also briefly consider larger resonators with
larger interaction strengths. The AlN physical constants were
obtained from the review by Ambacherf74g.

We turn now to a calculation of the dilatational mode of
the piezoelectric disk, assumingR/b@1. The disk lies in the
xy plane. In theR/b@1 limit, the elastic displacement field
usr ,td for the dilatational mode is directed in thez direction,
and thez component is itself only dependent onz andt. Edge
effects are assumed to be negligible. The vibrational dynam-
ics for this mode and its harmonics is therefore effectively
one-dimensional.

Let u denote thez component of the displacement field.
To construct the equation of motion forusz,td, we write the
basic electromechanical equations of piezoelectric media
f75g in the modified form

TABLE III. Parameters characterizing the piezoelectric resona-
tor simulated in this paper.

Piezoelectric material AlN

Mass densityr 3.26 g cm−3

Dielectric constante33/e0 10.7

Elastic stiffnessc33 395 GPa

Piezoelectric moduluse33 1.46 Cm−2

Piezoelectric efficiencyg;e33
2 /e33c33 0.057

Enhanced stiffnessc̃33;s1+gdc33 418 GPa

Sound velocityv;Îc̃33/r 11.3 km s−1

Disk radiusR 0.230mm

Disk thicknessb 377 nm

Dilatational frequencyv0/2p 15 GHz

Frequency in Kelvin"v0/kB 720 mK

Resonator capacitanceCres 0.042 fF
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Ez =
1

e33
Dz − h33]zu s26d

and

Tzz= − h33Dz + c̃33]zu. s27d

HereEz andDz are thez components of the electricE andD
fields, andTij is the stress tensor.e33 is the relevant element
of the static dielectric tensor, andh33;e33/e33, with e33 the
piezoelectric modulus. Finally,c̃33;s1+gdc33 is a piezoelec-
trically enhanced elastic modulus, withc33 denoting the ap-
propriate element of the elastic tensor, and

g ;
e33

2

e33c33
s28d

is a dimensionless quantity called the piezoelectric effi-
ciency. The values of these material parameters for the case
of AlN are summarized in Table III. Equations26d deter-
mines the relation between the electric field and strain inside
the resonator, and Eq.s27d determines the stress-strain rela-
tionship, as modified by the electric field.

Electrically, the boundary conditions are that there is a
charge per unit areas on the top electrode of a parallel-plate
capacitor enclosing the resonator, and −s on the lower elec-
trode. Then, in the interior of the piezoelectric,Dz is uni-
form, with the value

Dz = − s. s29d

Mechanically, the faces of the resonator are assumed to be
stress-free. We note from Eq.s27d that whensÞ0, this
stress-free condition requires a fixedstrain of −h33s / c̃33 on
the upper and lower surfaces of the disk. Note that these
boundary conditions are generally time-dependent, because
s usually is.

The resonator has thicknessb and occupies the region 0
,z,b. From the mechanical equation of motionr]t

2ui
=] jTij we obtain

s]t
2 − v2]z

2du = 0, with v ; Îc̃33/r. s30d

The sound velocity in thez direction is slightly enhanced
because of the piezoelectric effect. The most general solution
of Eq. s30d, satisfying the required boundary conditions, is

usz,td = −
h33sstd

c̃33

z+ Reo
n=0

`

An cossknzde−ivknt, s31d

where

kn ; np/b. s32d

Here we have assumed thats is quasistationary, so that]t
2s

is negligible. The first term in Eq.s31d describes a back-
ground strain caused the electric field in the capacitor,
present in the classical limit even at zero temperature, while
the second term describes harmonic fluctuations about that
strain. Then=0 mode is a center-of-mass translation. The
n=1 mode is the fundamental thickness-oscillation mode of
interest here; it has an angular frequency given by Eq.s23d.

C. Model Hamiltonian

Next we derive a model Hamiltonian for a single current-
biased JJ coupled to the dilatational mode of a piezoelectric
nanomechanical disk resonator. The layout is similar to that
illustrated in Fig. 4, except that there is only one junction,
and the gate electrode is not split. Extension to multiple junc-
tions and resonators will be carried out in Sec. VI. As before,
we will assume that the junction and resonator states are
long-lived, and any effects of decoherence are neglected. We
will proceed by returning to the semiclassical description of
the JJ reviewed in Sec. II A, including the resonator in the
equivalent circuit, and then requantizing the coupled system.

Our first objective is to derive an equation forI res, the
resonator’s contribution to the electrical current seen by the
JJ.I res is equal toq̇, whereq is the charge on the resonator’s
top sungroundedd electrode produced by voltage fluctuations
across and strain fluctuations inside the resonator. Integrating
Eq. s26d gives the voltage

V = −E
0

b

dz Ez =
sb

e33
+ h33bU s33d

across the resonator and JJ, in terms of the charge on the
electrodes and the spatially averaged strain

Ustd ;
usb,td − us0,td

b
s34d

in the resonator. Equations33d can then be written in terms
of the total chargeq;spR2 on the upper plate as

q = CressV − bh33Ud, s35d

where Cres;e33pR2/b is the geometric capacitance of the
resonatorsagain assumingR/b@1d.

The resonator therefore produces a current equal to

I res= CressV̇ − bh33U̇d. s36d

The first term in Eq.s36d describes a purely capacitive effect,
which would be present even in the absence of the piezoelec-
tric disk between the electrodes. We will find that this term
simply adds the capacitance of the resonator in parallel with
the junction capacitanceC, thereby reducing the junction’s
charging energy. The second term is a consequence of piezo-
electricity, and will be shown to have two effects: coupling
the JJ to resonator phonons and renormalizingCres.

It will be convenient to write Eq.s31d as

usz,td = −
h33sstd

c̃33

z+ dusz,td, s37d

where

dusz,td ; Reo
n=0

`

An cossnpz/bde−ivknt s38d

is the harmonic fluctuation contribution. After quantization,
this latter part of the displacement field will come from
phonons. The average strain can be similarly expanded as
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Ustd = −
h33sstd

c̃33

+ dUstd, s39d

where

dUstd ;
dusb,td − dus0,td

b
. s40d

Now, the time derivative of the first term in Eq.s39d is
itself proportional toI res, so Eq. s36d can be equivalently
written as

I res= C̃ressV̇ − bh33dU̇d, s41d

where

C̃res;
Cres

1 − g − g2 s42d

is a piezoelectrically enhanced resonator capacitance, andg
is the piezoelectric efficiency defined in Eq.s28d. In contrast
with that of Eq.s36d, the second term in Eq.s41d describes a
pure coupling to resonator phonons.

Returning to the inset of Fig. 1, we replaceIb with Ib
+ I res. In our coupled junction-resonator system,Ib then refers
to the bias current coming from the external circuitry alone,
which may have both dc and rf componentsssee Sec. III Ad.
The semiclassical equation of motion replacing Eq.s6d is
now that of a particle with a modified mass moving in a
potentialU+dHcl, where

dHcl ;
"Cresbh33dU̇

2es1 − g − g2d
d. s43d

The classical junction-resonator interaction HamiltoniandHcl
is evidently linear in the phase differenced. The effective
massM of the particle is given by Eq.s7d, with Ec now

reduced to 2e2/ sC+C̃resd.
Quantization of thed variable proceeds as in Sec. II B.

The quantization of the resonator dynamics is carried out in
Appendix A. The resonator Hamiltoniansdropping an irrel-
evant additive constantd is

Hres= "v0a
†a, s44d

wherea† anda are bosonic creation and annihilation opera-
tors for dilatational phonons. The junction-resonator interac-
tion Hamiltonian is found to be

dH ; − igsa − a†dd, s45d

where

g ;
"3/2e33C̃res

Îv0

ee33
ÎrpR2b

s46d

is a real-valued coupling constant with dimensions of energy.
We note thatg depends only on the properties of the resona-
tor and is independent of the parameters characterizing the
Josephson junction. The value ofg quoted in Eq.s46d applies
to a fully gated resonator coupled to a single JJ; for a JJ
connected to one-half of a split-gate resonator, such as in
Fig. 4, the relevant interaction strength isg/2. Finally, the

expressions46d is strictly valid only whenR/b@1, but we
shall assume that it is a reasonable approximation for mod-
erate values ofR/b f73g.

For a fixed disk thicknessb, chosen to determinev0, the
interaction strength varies linearly with disk radiusR. Using
the parameters summarized in Table III for a 15 GHz AlN
resonator, we obtain

g = 2.70meV 3 Rfmmg, s47d

whereRfmmg is the resonator radius inmm. In the simplest
qubit storage simulations carried out below, we chooseR to
be 0.230mm, in which case the interaction strength is
0.620meV. In Table IV, we summarize this and other param-
eters associated with the most basic coupled JJ-resonator sys-
tem.

The complete Hamiltonian of the system is

H = H0 + dH, with H0 ; HJ + Hres. s48d

The junction HamiltonianHJ depends ons, and whens is
time-dependent,HJ is also time-dependent. We shall address
this issue below in Sec. III D. Assumings is constant, the
stationary states ofH0 may be written as

umnl ; umlJ ^ unlres, s49d

where m=0,1,2, . . . labels the junction state andn
=0,1,2, . . . is thephonon occupation number of the resona-
tor. The eigenvalues ofH0 are

Emn= em + "v0n. s50d

The umnl andEmn of course depend ons. We will refer to the
lowest two eigenstates ofH0 as the phase qubit, and toDE
fdefined in Eq.s15dg as the qubit level spacing, even if there
are more than two quasibound levels in the junction.

For many applications it is convenient to write the JJ
Hamiltonian of Eq.s13d in second-quantized form, as

HJ = o
m

emcm
† cm. s51d

Here cm
† and cm are creation and annihilation operators for

the junction states, which can be taken to be either fermionic
or bosonic because there is only one “particle” in the wash-

TABLE IV. Parameters for a single JJ coupled to the resonator
of Table III. The junction parameters correspond to that investigated
Ref. f3g.

Critical currentI0 21 mA

Josephson energyEJ 43.05 meV

Junction capacitanceC 6 pF

Charging energyEc 53.33 neV

Zero-bias plasma frequencyvp0/2p 16.4 GHz

Resonant bias currents* 0.545

Junction-resonator interaction strengthg 0.620meV

Resonant vacuum Rabi frequencyVs0d /2p 8.79 MHz

Resonant Rabi period 2p /Vs0d 113.7 ns
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board potential. In this same notation, the interaction Hamil-
tonian becomes

dH = − ig o
mm8

xmm8sa − a†dcm
† cm8, s52d

where thexmm8 are dipole-moment matrix elements defined
in Eq. s19d.

An important simplification occurs when only the qubit
statesm=0,1 areincluded in the JJ. In this case, the com-
plete Hamiltonian can be written as

H = Se0 0

0 e1
D + "v0a

†a − igsa − a†dSx00 x01

x10 x11
D , s53d

with the JJ operators written as matrices in thehu0l,u1lj basis.
Recall that the diagonal dipole momentsxmm do not gener-
ally vanish in the current-biased JJ, but fors not too close to
unity they are approximately equal to arcsins. In the ap-
proximationx00=x11, and dropping an additive constant, we
can succinctly write Eq.s53d in terms of the Pauli matrices as

H = −
DE

2
sz + "v0a

†a − igsa − a†dfx00s0 + x01sxg,

s54d

where s0 is the identity matrix. Note, however, thatx00
Þx11 when s is very close to 1. Finally, when bothDE
<"v0 and g!DE, the commonly used rotating-wave ap-
proximation of quantum optics becomes valid. Applied to the
form s53d or s54d, the Hamiltonian simplifies to

HJC; −
DE

2
sz + "v0a

†a − igx01sas− − a†s+d, s55d

wheres± ;ssx± isyd /2. HJC is the Jaynes-Cummings model
of quantum opticsswritten in a basis that is different from
that conventionally used thered.

The Hamiltonian in Eq.s48d is equivalent to that of a
few-level atom in an electromagnetic cavity. The JJ is analo-
gous to an atom. The cavity photons here are dilatational-
mode phonons, which interact electrically with the junctions
via the piezoelectric effect. Coupling several junctions to a
nanomechanical resonator, as illustrated in Fig. 5, then
makes the system analogous to several atoms in an electro-
magnetic cavity, except that here the atomic level spacing
and electron-photon interaction strength are all externally
controllable.

D. Quantum dynamics in the instantaneous basis

As discussed above, the HamiltonianHJ for the JJ de-
pends on the dimensionless bias currents, and is therefore
usually time-dependent. It will be useful to expand the state
of the coupled system in a basis of normalized instantaneous
eigenstatesumnls of H0, defined by

H0ssdumnls = Emnssdumnls, with s= sstd. s56d

We assume that at timet= t0, the bias current is constant and
the system is prepared in a pure state. Fort. t0, we write the
wave function, suppressing the time dependence ofsstd, as

ucstdl = o
mn

cmnstde−si/"det0
t dt8Emnssdumnls. s57d

The probability amplitudes in the instantaneous interaction
representation satisfy

i"ċmn= o
m8n8

kmnudH − i"]tum8n8ls

3 esi/"det0
t dt8fEmnssd−Em8n8ssdgcm8n8. s58d

Off-diagonal matrix elements of the quantity

kmnu
]

]t
um8n8ls = kmnu

]

]s
um8n8lsṡ s59d

determine transitions between the instantaneous eigenstates
caused by nonadiabatic variation ofs; the diagonal elements
determine the Berry connection of adiabatic perturbation
theory. In the smalls, quadratic-potential limit, the low-lying
JJ eigenstates are well approximated by the harmonic-
oscillator eigenfunctions given in Eq.s16d. In this case, it can
be shown that

kmnu
]

]s
um8n8ls =

1

,s
Î1 − s2

SÎm8 + 1

2
dm,m8+1

−Îm8

2
dm,m8−1Ddnn8

+
1

,s

d,s

ds
SÎsm8 + 1dsm8 + 2d

2
dm,m8+2

−
Îm8sm8 − 1d

2
dm,m8−2Ddnn8, s60d

where

FIG. 5. Four current-biased JJs coupled to a nanoelectrome-
chanical resonator. Each junction is connected to a metallic plate on
the surface of the resonator that covers about one-quarter of the
surface. Because we make use of the fundamental dilatational
mode, which is spatially uniform in the plane of the resonator, the
qubits are all equally well coupled to that mode.
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d,s

ds
=

s,s

4s1 − s2d
. s61d

There are no diagonalsBerry connectiond terms in this limit.
The terms in Eq.s60d proportional tod,s/ds result from the
change of curvature at the minimum of theanharmonicpo-
tential Usdd with changings.

IV. QUBIT STORAGE AND TRANSFER

We now turn to a discussion of some single-qubit opera-
tions made possible by the nanomechanical resonator. In par-
ticular, we show that any phase qubit state

ucJl = au0lJ + bu1lJ with uau2 + ubu2 = 1 s62d

produced in the current-biased JJ can be written to and co-
herently stored in the phonon-number states of the resonator,
as

ucresl = au0lres+ bu1lres, s63d

yielding a quantum memory element. In Eq.s62d, the states
u0lJ andu1lJ are the lowest two junction eigenstates shown in
Fig. 3, whereas in Eq.s63d they denote the vacuum and
one-phonon states of the resonator’s dilatational mode. Later,
the qubit state can be reversibly retrieved or transferred to a
second Josephson junction.

We will examine qubit storage and transfer in two stages:
First we will develop a simple analytic theory based on the
adiabatic approximation combined with the rotating-wave
approximationsRWAd of quantum opticsf76g. The adiabatic
approximation assumes that the bias currents changes
slowly on the frequency scaleDE/", a requirement thatsal-
though not always desirabled can be easily satisfied in prac-
tice. The RWA for a phase qubit is valid when two conditions
are met:

sid DE and"v0 are close to each other on the scale of the
resonator’s energy width"v0/Q. HereQ is the resonator’s
dilatational-mode quality factor. Transitions to higher levels
umlJ with m.1 are far off resonance on this same scale.

sii d The interaction strengthg is small compared withDE
sor "v0d.

We will then supplement the analytic theory with numeri-
cal simulations based on the full Hamiltonian of Eq.s48d,
using realistic values of all parameters involved.

A. RWA analysis

To understand qubit storage, consider a single junction
coupled to a nanomechanical resonator as described by the
Hamiltonian of Eq.s48d, and expand the wave function for
the combined system as in Eq.s57d. The probability ampli-
tudescmnstd in the instantaneous interaction representation
then satisfy Eq.s58d.

We start at some timet0,0 with the JJ prepared in the
states62d and the resonator in its ground state,

ucst0dl = sau0lJ + bu1lJd ^ u0lres= au00l + bu10l. s64d

We assume that the qubit and resonator are detuned and that
g!"v0. Then theumnl in Eq. s64d are close to eigenstates,

and thecmn remain approximately constant. The qubit level
spacingDE is now adiabatically changed to the resonant
value, reaching"v0 at time t=0. Then att=0 we have, ap-
proximately,

cmns0d = sadm0 + bdm1ddn0. s65d

As we shall discuss below, the first nonadiabatic corrections
to Eq. s65d principally affect the phases of theu00l and u10l
components of the wave function, that is, the phases ofa and
b. The wave function att=0 is therefore

ucs0dl < ae−si/"det0
0 dtE00fsstdgu00l + be−si/"det0

0 dtE10fsstdgu10l.

s66d

Next we invoke the RWA, which allows us to write Eq.
s58d as

ċ0n =
g

"
Înx01e

ivdtc1,n−1

ċ1n = −
g

"
În + 1x01e

−ivdtc0,n+1. s67d

We have also assumed that all dissipation and decoherence
mechanisms are negligible over experimental time scales.
Furthermore, as discussed in Sec. II B, we can takex01 to be
positive with no loss of generality. Using Eqs.s65d ands67d,
we then obtain, by Laplace transformation,

c00std = a,

c01std = b
Vs0d

V
sinSVt

2
Deivdt/2,

c10std = bFcosSVt

2
D + i

vd

V
sinSVt

2
DGe−ivdt/2,

c11std = 0, s68d

and allcmnstd with n.1 equal to zero. Here

Vsvdd ; ÎfVs0dg2 + vd
2 with Vs0d ;

2gx01

"
s69d

is the vacuum Rabi frequency, andvd;v0−DE/" is the
resonator-qubit detuning.Vs0d is the Rabi frequency on
resonance. Probability amplitudes at selected times are sum-
marized in Table V. The wave function at later timest.0,
when the system is on resonance, is therefore

ucstdl < e−iE00fs* gt/"Fae−si/"det0
0 dtE00fsstdgu00l

+ b sinSVt

2
De−si/"det0

0 dtE01fsstdge−iv0tu01l

+ b cosSVt

2
De−si/"det0

0 dtE10fsstdge−iv0tu10lG , s70d

wheres* is the resonant value of the dimensionless bias cur-
rent. We emphasize that the result in Eq.s70d is only ap-
proximate.
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After a pulse durationDt, the JJ is again detuned from the
resonator. The final wave functions, in the instantaneous in-
teraction representation, for several important choices ofDt
are summarized in Table VI. In this representation, the phase
factors expf−si /"dedtEmnssdg appearing in Eq.s57d are sup-
pressed.

WhenVDt=p /2, the system is held in resonance for one-
quarter of the vacuum Rabi period, and the final state is
entangled. In particular, when the qubit begins completely in
the excited state,a=0 andb=1, the resulting state is

u01l + u10l
Î2

. s71d

Similarly, after three-quarters of a Rabi period, the final state
is 2−1/2su01l− u10ld.

After half a Rabi period, orVDt=p, the phase qubit and
resonator states are evidently swapped. The cavity-QED ana-
log of this operation has been demonstrated experimentally
in Ref. f77g. This operation is extremely useful in our archi-
tecture. In addition to allowing the resonator to be used as a
quantum memory element, it can be used as a quantum bus
to transfer a qubit state from one JJ to another attached to the
same resonator.

To retrieve a state that has been stored in the resonator,
the junction is again tuned to"v0, except this time for one
and a half Rabi periods, orVDt=3p. This longer pulse
length requirement follows from the RWA equationss67d. An
exception is the special case where the stored state is au0l or
u1l, and one does not care about the overall phase of the final
result, as in our Ref.f51g. We have extensively simulated the
use of the resonator as a quantum memory element, and its
speed and fidelity as a function of coupling strength and
position of the stored state on the Bloch sphere. With dimen-
sionless interaction strengthsg/"v0 around a few percent,
the RWA is quite reliable, and the main source of error

comes from nonadiabatic effects during the ramping ofsstd,
which leads to errors in Eq.s65d. These are principally phase
errors inc00 andc10, which results in a significant qubit-state
dependence to the memory fidelity, with states closer to the
south polesu1l stated of the Bloch sphere being stored less
accurately. We shall return to these issues in future work.

To transfer a qubit stateau0lJ1+bu1lJ1 from junction 1 to
junction 2, the state is stored in the resonator’s dilatational
phonon number states asau0lres+bu1lres. After junction 1 is
taken out of resonance, the bias on the junction 2 is varied to
bring it into resonance with the resonator for one and a half
Rabi periodssVDt=3pd, resulting in the creation of the state
au0lJ2+bu1lJ2 in the second junction.sAgain, the case where
the transferred state is au0l or u1l is exceptional, and a half of
a Rabi period is sufficient.d The original qubit state is there-
fore transferred from one junction to another. It will be pos-
sible to verify experimentally that this has occurred by read-
ing out the second junction at the end of the transfer
operation.

B. Simulating storage and transfer

The analysis above, which is based on the adiabatic and
rotating-wave approximations, implies that JJ states can be
stored, transferred, and controllably entangled with perfect
accuracy, and—with an appropriate choice ofg—arbitrarily
quickly. This is not the case: The actual fidelity is determined
by the corrections to these approximations. In this section,
we shall study the storage and transfer fidelities by direct
numerical integration of the time-dependent Schrödinger
equation.

We begin by simulating the storage of a JJ state in the
phonon-number states of a resonator. To do this, we solve the
time-dependent Schrödinger equation for the coupled
junction-resonator system by numerically integrating the
coupled equationss58d for the casefsee Eq.s62dg

a = 0 and b = 1. s72d

This corresponds to the phase qubit starting in the excited
eigenstateu1lJ. The resonator starts out in its ground state
u0lres. Our main result, which is shown in Fig. 6, will be
discussed in detail below.

To ensure the reliability of the numerical results, we em-
ployed a variety of ODE integrators, including both explicit
and implicit algorithms, as well as exact diagonalization for
cases with constants. No significant differences were ob-
served. The results presented were obtained with the fourth-
order Runge-Kutta method with a time step of 1 fs, which
guaranteed that probability was conserved for the duration of
the calculation to better than 99.99%. Josephson junction
energy levelsem and dipole-moment matrix elementsxmm8 as
a function of s were calculated using the diagonalization
method discussed in Sec. II B, and found to be extremely
close to that of a harmonic oscillator in the range of bias
currents employed here.

We simulate a large area, current-biased JJ with param-
eters corresponding to that investigated in Ref.f3g, namely
EJ=43.05 meV andEc=53.33 neV. The zero-bias plasma
frequencyvp0/2p is therefore 16.4 GHz. A 15 GHz resona-

TABLE V. Probability amplitudescmnstd for a phase qubit
coupled to a nanomechanical resonator, at time zero when they are
brought to perfect resonance, as well as one-quarter, one-half, and
three-quarters of a vacuum Rabi-oscillation period later.

Amplitude t=0 t=p /2V t=p /V t=3p /2V

c00 a a a a

c01 0 b /Î2 b b /Î2

c10 b b /Î2 0 −b /Î2

c11 0 0 0 0

TABLE VI. Approximate final wave functions, in the instanta-
neous interaction representation, after the phase qubit and resonator
have been in resonance for a timeDt.

VDt Final state Operation

p /2 au00l+bsu01l+ u10ld /Î2 entangle

p u0lJ^ sau0lres+bu1lresd swap

3p /2 au00l+bsu01l− u10ld /Î2 entangle
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tor will be in resonance with this junction whens=0.545,
comfortably far from the regime nears=1 where bias-current
fluctuations are most destructive. The nanomechanical reso-
nator we simulate has the parameters listed in Table III,
which results in a junction-resonator interaction strengthg
given in Table IV. The resonator thicknessb is determined
by the desired 15 GHz frequency of the thickness-oscillation
mode, and the disk radiusR can be used to varyg without
appreciably affecting that frequency. As we noted in Eq.
s47d, g is linearly proportional toR sin the largeR/b limit d.
We have used this tunability to ensure that the system is in
the regime where the RWA analysis of Sec. IV A is appli-
cable. Below we will briefly examine results of simulations
with larger values ofg. There are more than 400 quasibound
statesumlJ in the junction whens=0.545. To the accuracy of
the numerical results reported here, we find no sensitivity to
the number of JJ states included in the calculations as long as
at least four states are included. The resonator, of course, has
an infinite number of phonon-number eigenstatesunlres, and
the results shown here have been calculated by including the
four states lowest in energy, as increasing beyond this num-
ber led to no significant changes.

We turn now to a discussion of Fig. 6. At time zero, the
current bias iss=0.40 and the wave-function amplitudes are

taken to becmns0d=dm1dn0. The bias is held ats=0.40 for
5 ns. As shown in Fig. 6, the occupation probability of the
u10l state remains close to unity during this time interval. All
other states remain essentially unoccupied. After 5 ns, the
bias current is adiabatically changed to the resonant value of
s=0.545. Our simulations show that the success of a qubit
storage depends somewhat sensitively on theshapeof the
bias-current profilesstd in the transition region. In particular,
we find that the time during whichs changes from the off-
resonant value to the resonant one should be at least expo-
nentially localized. The result presented in Fig. 6 was ob-
tained using a trapezoidal profile with a crossover time of
1 ns, which should be compared with the resonator and on-
resonance qubit period of 0.1 ns. Similar results were ob-
tained using Gaussian profiles. The JJ level spacing is tuned
to "v0 for half of a Rabi period. During this time interval,
the junction interacts strongly with the resonator, and energy
is exchanged back and forth between the two systems. The JJ
is then detuned from the resonator. Some of the final prob-
ability amplitudes are given in Table VII. For the small value
of g used here, chosen so thatg/"v0=0.01, the numerical
results for theucmnu2 are in excellent agreement with the
RWA. However, the RWA prediction for the phases of the
cmn are poor until one goes to even smaller values ofg. In
other words, the RWA is better at predicting the moduli of
the cmn than their phases.

It is interesting to examine the extent to which higher-
energy states of the junction and resonator become excited
during the storage operation. In Fig. 7, we plot the occupa-
tion probabilities of the statesu20l and u21l, both of which
involve the higher-lyingm=2 junction state. Similarly, in
Fig. 8 we plot the occupations ofu02l and u12l, which in-
volve then=2 oscillator state. In all cases, the excitation of
higher-lying states is negligible.

A few comments about these results are in order: The
observed sensitivity to the shape ofsstd can be understood by

FIG. 7. Occupation of the higher-lyingm=2 junction state dur-
ing qubit storage. The upper plot isuc20u2, and the lower plot is
uc21u2. Both quantities would vanish in the RWA. All junction and
resonator parameters are the same as in Fig. 6.

FIG. 6. Phase qubit storage. The solid descending curve is
uc10stdu2, the interaction-representation occupation probability of the
u10l state, calculated numerically for the junction of Ref.f3g
coupled to the 15 GHz piezoelectric resonator described in Table
III. The dashed curve is the same quantity calculated from the ana-
lytic RWA results of Sec. IV A. The solid ascending curve is
uc01stdu2. The dotted curve shows the time dependence of the dimen-
sionless bias currentsstd, which is varied to bring the phase qubit in
resonance with the resonator after 5 ns. The Rabi period on reso-
nance, whens=0.545, is 113.7 ns. After the storage operation,
uc10u2=0.002 anduc01u2=0.987. The inset shows an enlarged view of
uc10stdu2 during the ramping up ofsstd.

TABLE VII. Final-state amplitudescmn after qubit storage. Sys-
tem parameters are the same as in Fig. 6.

Probability amplitude Recmn Im cmn ucmnu2

c00 −0.046 0.016 0.002

c01 −0.061 0.992 0.987

c10 0.049 −0.007 0.002

c11 0.045 −0.030 0.003

FIG. 8. Occupation of the higher-lyingn=2 resonator state dur-
ing qubit storage. The upper plot isuc02u2, and the lower plot is
uc12u2; both vanish in the RWA. Parameters are the same as in Fig. 6.
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recalling that in the absence of any dissipation or decoher-
ence, the RWA requires the qubit to beexactlyin resonance
with the nanomechanical resonator. Therefore, it is necessary
to bring the two systems into resonance as quickly as pos-
sible without violating adiabaticity. The power-law tails as-
sociated with an arctangent function, for example, lead to
considerable deviations from the desired RWA behavior, as
we demonstrate in Fig. 9. We expect this sensitivity to be
present in real systems as well. We also find that the validity
of the RWA requiresg to be considerably smaller than"v0.
The ratiog/"v0 for the system simulated in Fig. 6 is 1%.
When the resonator disk radiusR is increased to 2.3mm,
g/"v0 is then only 10%, but the RWA already fails consid-
erably. This strong-coupling breakdown is demonstrated in
Fig. 10. The resonant Rabi period in this case is 11.4 ns. Of
course, the value ofDt used in Figs. 9 and 10 is a conse-
quence of the RWA analysis, and better fidelity could be
obtained by choosingDt differently.

Up to this point we have only discussed storage of the
simple qubit stateu1l. Storing general qubit states of the form
au0l+bu1l follows similarly, although achieving high fidelity
requires more care. The reason is that the ramping up ofsstd

introduces phase errors into Eq.s65d, the “inital” amplitudes
that get swapped. This can be circumvented to a considerable
extent by choosing an optimum value of theoff-resonantbias
current. In Fig. 11, we show results of the successful storage
of the qubit states 2−1/2su0l+ u1ld and 2−1/2su0l+ i u1ld, which
are on the equator of the Bloch sphere, usings=0.180 when
detuned from the resonator.

Finally, in Fig. 12, we present results of simulations of
two junctions coupled to a resonator. The JJs are the same as
in Fig. 6, but the resonator in this case has radiusR
=0.459mm. Because the upper gate is now split,g
=0.620meV for each JJ. The instantaneous eigenstates of the
uncoupled system can be written asum1m2nl, wherem1 and
m2 are the eigenstates of the junctions andn is the phonon
number of the resonator. The phase qubit is first stored in the
resonator, as described above, and is then passed to the sec-
ond identical junction. The result is a transfer of the qubit
stateu1l from one JJ to another. Only half a Rabi period of
resonance with the second JJ is needed for this transferred
state; in general, one and a half periods are required. The
probability amplitudes after the transfer are given in Table
VIII.

FIG. 9. Qubit storage with arctangent bias-current profile. All
system parameters are the same as in Fig. 6. The numerical result
for uc10u2, shown as a solid descending curve, is entirely different
from that predicted by the RWAsdashed curved, even though the
difference between thesstd profiles used here and in Fig. 6 is small.
The solid ascending curve isuc01stdu2. The qubit state is not cor-
rectly stored in the resonator.

FIG. 10. Qubit storage in a larger resonator. Here we simulate
qubit storage in a 15 GHz resonator withR=2.3 mm, so that
g/"v0=0.10. All other resonator and junction parameters are the
same as in Fig. 6. The solid descending curve isuc10u2, and the
dashed curve shows the desired RWA behavior. The solid ascending
curve isuc01u2. The RWA breaks down here because of the stronger
interaction strength. The dotted curve issstd. Qubit storage fails
again.

FIG. 11. Storage of qubit states on the equator of the Bloch
sphere.sad Here the initial state is 2−1/2su0lJ+ u1lJd ^ u0lres. The solid
descending curve is the squared overlap with the interaction-
representation state 2−1/2su00l+ u10ld, and the ascending curve is the
occupation of 2−1/2su00l+ u01ld. The dotted curve issstd. sbd The
initial state is 2−1/2su0lJ+ i u1lJd ^ u0lres The descending and ascend-
ing curves are the occupations of 2−1/2su00l+ i u10ld and 2−1/2su00l
+ i u01ld, respectively.

FIG. 12. Qubit transfer between two identical Josephson junc-
tions. The descending solid curve isuc100stdu2, the probability for the
first junction to be in them=1 excited state, and the rest of the
system to be in the ground state. The state of the first junction is
stored in the resonator as in Fig. 6, the peaked curve giving
uc001stdu2. The ascending curve isuc010stdu2, the probability for the
second JJ to be in the excited state. The solid and dotted trapezoidal
curves show the bias currentss1std ands2std on the two junctions.
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V. TWO-JUNCTION ENTANGLEMENT

The nanomechanical resonator can also be used to pro-
duce states where the JJs are entangled, with the resonator
remaining in its ground state, unentangled with the junctions.
We assume that two identical JJs are attached to the same
split-gate resonator. The instantaneous eigenstates of the un-
coupled system are written asum1m2nl, where m1 and m2
label the eigenstates of the junctions andn is the phonon
number of the resonator.

The foundations for this operation have already been ex-
plained in Sec. IV: According to Table VI, we can prepare an
entangled state of two JJs by bringing the first junction, pre-
viously prepared in the stateu1lJ1, into resonance with the
resonator forone-quarterof a vacuum Rabi period, orVDt
=p /2, which produces the interaction-representation state
2−1/2su001l+ u100ld. The first JJ is now maximally enangled
with the resonator, while the second junction is in the ground
state. After bringing the second junction into resonance for
half of a Rabi period, the state of the resonator and second
junction are swapped, thereby “passing” the resonator’s com-
ponent of the entangled state to the second junction. After
detuning the second junction, the system is then left in the
interaction-representation state

u100l − u010l
Î2

=
u10lJ − u01lJ

Î2
^ u0lres. s73d

The two Josephson junctions have been prepared in the
maximally entangled Bell state 2−1/2su10lJ− u01lJd. To pro-
duce the state 2−1/2su10lJ+ u01lJd, the VDt=p swap pulse
should be replaced with aVDt=3p swap pulse.

In Fig. 13, we present the results of a simulation of en-
tangled state preparation. The JJs are the same as in Fig. 6,
and the resonator has radiusR=0.459mm, resulting in an
interaction strength ofg=0.620meV for each JJ. The desired
entangled state is prepared with a probability of about 95%.

VI. LARGE-SCALE QUANTUM CIRCUIT

A strength of our architecture is scalability: By introduc-
ing additionalbus junctions coupled to a pair of resonators,
each resonator with a slightly different dilatational mode fre-
quency, the quantum states of the resonators can be swapped.
This makes it possible to construct a large JJ array, with all
phase qubits coupled. We call this layout a “hub-and-spoke”
network, an example of which is shown in Fig. 14. Each bus
qubit “spoke” couples each adjacent resonator “hub,” allow-

ing a completely scalable geometry without intrinsic size
limits.

The Hamiltonian for an arbitrary large-scale quantum-
information processing circuit consisting ofM phase qubits
andN nanomechanical resonators is constructed as follows.
Let I =1,2, . . . ,N label the resonators, which for simplicity
we assume to lie in a two-dimensional plane, and letJ
=1,2, . . . ,M label the junctions. Typically there will be
many more JJs than resonators. Each junction can couple to
one or two resonators, subject to the constraint that a reso-
nator can support on the order of 10 junctions, and that, for
fabrication convenience, bus qubits should connect adjacent
resonators. The Hamiltonian for such a quantum computer,
ignoring state preparation, manipulation, and readout cir-
cuitry, as well as all environmental coupling, energy relax-
ation, and decoherence, is

Hqc ; o
I

"vIaI
†aI + o

Jm

eJmcJm
† cJm

− io
IJ

o
mm8

gIJsaI − aI
†dxJmm8cJm

† cJm8. s74d

HerevI is the dilatational mode frequency of resonatorI, aI
†

and aI are dilatational-mode phonon creation and annihila-
tion operators satisfyingfaI ,aI8

† g=dII8, eJm is the spectrum of

TABLE VIII. Final probability amplitudescm1m2n after transfer-
ing a qubit state from one junction to another through the nanome-
chanical resonator. Transfer succeeds with a probability of better
than 97%.

Probability amplitude Recm1m2n Im cm1m2n ucm1m2nu2

c001 −0.075 0.003 0.006

c010 0.591 0.790 0.974

c100 0.023 0.038 0.002
FIG. 13. Preparation of entangled Josephson junctions. The dot-

ted curve is the probability for the system to be found in the
interaction-representation state 2−1/2su100l− u001ld, and the thick
solid curve is the same for 2−1/2su100l− u010ld. The thin solid and
dashed lines ares1std ands2std, respectively.

FIG. 14. Architecture for a large-scale JJ quantum computer. In
addition to the junctions coupled to a single resonator, as in Fig. 5,
here there are additional bus junctions for transferring states be-
tween different resonators.
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phase qubitJ, andcJm
† andcJm are creation and annihilation

operatorsseither bosonic or fermionicd for statesm in junc-
tion J. The matrixgIJ gives the interaction strength between
resonatorI and junctionJ; bus junctions have nonzerogIJ for
two values ofI, computational junctions will have only one
nonzero element. In Eq.s74d, we have also neglected any
direct capacitive interaction between phase qubits connected
to the same resonator.

As we will demonstrate in future work, the resonator can
be used to mediate two-qubit quantum logic between phase
qubits connected to that resonator. The quantum circuit of
Fig. 14 then allows quantum logic to be performed between
any pair of computational qubits, sayJ1 and J2. This is ac-
complished by swapping the state stored inJ2 with a phase
qubit J18 attached to the same resonator asJ1, performing the
logical operation onJ1 and J18, and then reswappingJ18 and
J2. Any pair of computational qubits in Fig. 14 can also be
controllably entangled this way.

VII. DISCUSSION

We have introduced a design for a scalable, solid-state
quantum computing architecture based on the integration of
nanoelectromechanical resonators with Josephson junction
phase qubits. Quantum states prepared in a Josephson junc-
tion can be passed to the nanomechanical resonator and
stored there, and then can be passed back to the original
junction or transferred to another with high fidelity. The reso-
nator can also be used to produce entangled states between a
pair of Josephson junctions. Universal two-qubit quantum
logic will be addressed in future work. The architecture is
analogous to one or more few-level atoms in an electromag-
netic cavity, and the junction-resonator complexes can be
assembled in a hub-and-spoke layout, resulting in a large-
scale quantum circuit.

The calculations presented here have ignored all effects of
dissipation and decoherence, with the assumption that the
associated lifetimes are longer than a few hundred ns. This is
not unreasonable given the current experimental situation.
Nor have we attempted to perform the operations as fast as
possible, and we expect there to be considerable room for
improvement in both speed and fidelity.

Finally, we emphasize that many of our results will apply
to other resonator- or oscillator-based qubit coupling meth-
odsf15,17–32g. In particular, the promising design being de-
veloped at Yalef15,28,29g, using charge qubits coupled to
superconducting transmission line resonators, is very similar
to the architecture discussed here.
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APPENDIX A: QUANTUM MECHANICS
OF THE PIEZOELECTRIC RESONATOR

Here we quantize the vibrational dynamics of the piezo-
electric resonator. In the quantum limit, the first term in Eq.
s37d, which describes the background strain generated by the
chargesstd, becomes trivially quantized: It gets multiplied
by the identity operator.

The quantization of the fluctuation termdusz,td proceeds
similarly to that of ordinary phonons, although we have to
treat the zero-frequencysn=0d mode separately. First we
construct a complete set of orthonormal eigenfunctions from
Eq. s38d, namely

fnszd ;Î2 − dn0

b
cossnpz/bd, n = 0,1,2, . . . . sA1d

These eigenfunctions can be shown to satisfy orthonormality,

E
0

b

dz fm
* szdfnszd = dmn, sA2d

and completeness,

o
n=0

`

fn
*sxdfnsx8d = dsx − x8d, sA3d

although in our case thefnszd are purely real.
The quantized displacement-fluctuation field is given by

duszd = f0szdz0 + o
n=1

` Î "

2rlinvkn
ffnszdan + fn

*szdan
†g,

sA4d

and its associated momentum densityP;rlin]tu is

Pszd = f0szdp0 − io
n=1

` Î"rlinvkn

2
ffnszdan − fn

*szdan
†g,

sA5d

wherekn is defined in Eq.s32d. Herez0 is thez component of
the resonator center-of-mass coordinate operator,p0 is thez
component of the center-of-mass momentum operator, and
fz0,p0g= i". Then=0 term is excluded in the summations of
Eqs.sA4d andsA5d because the corresponding frequencyvkn
vanishes; its separate inclusion in the form given above will
enable the use of the completeness relationsA3d in the analy-
sis below. Thean andan

† are bosonic phonon annihilation and
creation operators satisfyingfan,an8

† g=dnn8. rlin ;Mres/b is
the linear mass density of the cylindrical resonator, withMres
the resonator’s mass. Using Eq.sA3d, it can be shown that

fuszd,Psz8dg = fduszd,Psz8dg = i"dsz− z8d, sA6d

as required.
The final expression for the quantized displacement field

is therefore
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usz,td = −
h33sstd

c̃33

z+ f0szdz0std

+ o
n=1

` Î "

2rlinvkn
ffnszdane

−ivknt + fn
*szdan

†eivkntg,

sA7d

wherez0std is in the Heisenberg representation. If the Hamil-
tonian for the center-of-mass dynamics isp0

2/2Mres, then
z0std=z0+sp0/Mresdt. Note that the center-of-mass mode does
not produce any strain and does not enter into our final re-
sults.

Using Eq.sA7d leads to

dU = −
2

b
o

n odd

Î "

Mresvkn
san + an

†d. sA8d

If we include only the fundamental dilatationalsn=1d mode
in Eq. sA8d, we obtainssuppressing the subscript on the di-
latational phonon operatorsd

dU < −
2,res

b
sa + a†d, sA9d

where,res;Î" /Mresv0 is the characteristic size of quantum
fluctuations in this mode, and wherev0 is the dilatational
frequency defined in Eq.s23d.

Assuming a harmonic vibrational dynamics for the reso-
nator, and ignoring the center-of-mass motion, the resonator
Hamiltonian is

Hres= o
n=1

`

"vknsan
†an + 1

2d. sA10d

Keeping only then=1 dilatational mode, and dropping the
additive c-number constant, leads to Eq.s44d. Using Eq.
sA10d, we then obtain

dU̇ =
i

"
fHres,dUg =

2i

b
o

n odd

Î"vkn

Mres
san − an

†d. sA11d

The n=1 term on the right-hand side of Eq.sA11d, when
inserted into Eq.s43d, yields the interaction Hamiltonian of
Eq. s45d with the coupling constant given in Eq.s46d.
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