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We describe the design for a scalable, solid-state quantum-information-processing architecture based on the
integration of GHz-frequency nanomechanical resonators with Josephson tunnel junctions, which has the
potential for demonstrating a variety of single- and multiqubit operations critical to quantum computation. The
computational qubits are eigenstates of large-area, current-biased Josephson junctions, manipulated and mea-
sured using strobed external circuitry. Two or more of thpeasequbits are capacitively coupled to a
high-quality-factor piezoelectric nanoelectromechanical disk resonator, which forms the backbone of our ar-
chitecture, and which enables coherent coupling of the qubits. The integrated system is analogous to one or
more few-level atomsthe Josephson junction qubits an electromagnetic cavitfthe nanomechanical reso-
naton. However, unlike existing approaches using atoms in electromagnetic cavities, here we can individually
tune the level spacing of the “atoms” and control their “electromagnetic” interaction strength. We show
theoretically that quantum states prepared in a Josephson junction can be passed to the nanomechanical
resonator and stored there, and then can be passed back to the original junction or transferred to another with
high fidelity. The resonator can also be used to produce maximally entangled Bell states between a pair of
Josephson junctions. Many such junction-resonator complexes can be assembled in a hub-and-spoke layout,
resulting in a large-scale quantum circuit. Our proposed architecture combines desirable features of both
solid-state and cavity quantum electrodynamics approaches, and could make quantum-information processing
possible in a scalable, solid-state environment.
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I. INTRODUCTION and scalable solid-state quantum-information-processing ar-
chitecture[51]. The computational qubits are taken to be the
The lack of easily fabricated physical qubit elements, havenergy eigenstates of the JJs, which are to be individually
ing both sufficiently long quantum-coherence lifetimes andprepared, controlled, and measured using the external cir-
the means for producing and controlling their entanglementcuitry developed by Martinigt al.[3]. These superconduct-
remains the principal roadblock to building a large-scaleing phasequbits are capacitively coupled to a high-quality-
quantum computer. Superconducting devices have been ufactor piezoelectric dilatational disk resonator, cooled on a
derstood for several years to be natural candidates for quauwlilution refrigerator to the quantum limit, which forms the
tum computation, given that they exhibit robust macroscopidackbone of our architecture. We shall show that the inte-
guantum behavidrl]. Demonstrations of long-lived Rabi os- grated system is analogous to one or more few-level atoms
cillations in current-biased Josephson tunnel junctid8] (the JJ5in an electromagnetic cavitfthe resonatgr How-
and of both Rabi oscillations and Ramsey fringes in aever, here we can individually turia situ the energy level
Cooper-pair box4—6] have generated significant new inter- spacing of each “atom,” and control the “electromagnetic”
est in the potential for superconductor-based quantum comnteraction strength. This analogy makes it clear that our de-
putation[7,8]. Several additional experimental accomplish-sign is sufficiently flexible to be able to carry out essentially
ments have followed[9-16], including the impressive any operation that can be done using other architectures, pro-
demonstration of controlledoT logic with charge qubits vided that there is enough coherence. Many of our results
[12], and a large body of theoretical work is beginning towill apply to other architectures that are similar to atoms in a
address these and related systemS,17-5]. Coherence cavity.
times 7, up to 5us have been reported in the current-biased Several investigators have proposed the use®freso-
devices[2], with corresponding quantum-coherent quality nators|17—26], superconducting caviti¢45,27-29, or other
factors Q,= 7,AE/% of the order of 1B, indicating that types of oscillator§30-32, to couple JJs together. We note
these systems should be able to perform many logical operdhat although harmonic oscillators are ineffective as compu-
tions during the available coherence lifetif®]. Here AE  tational qubits, because the lowest pair of levels cannot be
is the qubit energy-level separation, which was &8/ in  frequency selected by an external driving force, they are
the experiment of Ref2]. quite desirable as bus qubits or coupling elements. Early on,
In this paper, we expand on our earlier proposal suggesShnirmanet al. [17] suggested an architecture consisting of
ing that GHz-frequency nanoelectromechanical resonatorseveral superconducting charge qubits in parallel with an in-
can be used to coherently couple two or more current-biaseductor. The JJs are themselves out of resonance with each
Josephson junctiofl) devices together to make a flexible other and hence weakly coupled, and the resultiGgreso-
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nator(the capacitance coming from the junction geomesy 3 ' ' i

also used well below its resonant frequency. An interesting 2t IbR
modification of this design couples the small island to the nk

external circuit through a pair of parallel JJs, which allows @ ol

the Josephson coupling energy to be varied, using an external S

magnetic field 18]. To date, however, the only coupled su- I

perconducting qubits demonstrated experimentally have been 2r

the capacitively coupled charge qubits of Peshdiral. [9] 3 - s -

and Yamamotoet al. [12], and the capacitively coupled -10 ?; 10

phase qubits of Berklegt al.[11].
Resonator-based coupling schemes, such as the one pro-rIG. 1. Effective potential(8) for dimensionless bias current
posed here, have the advantage of additional functionalitg=1,/1,equal to 0.1, plotted in units ;. Inset: Equivalent-circuit
resulting from the ability to tune the qubits relative to the model for a current-biased Josephson junction. A capacit@rared
resonator frequency, as well as to each other. We shall showesistancer are in parallel with an “ideal” Josephson element, rep-
that by tuning the JJs in and out of resonance with the nanagesented by a cross and having critical currigniA bias current,
mechanical resonator, qubit states prepared in a junction cas driven through the circuit.
be passed to the resonator and stored there, and can later be
passed back to the original junction or transferred to another fil,
JJ with high fidelity. The resonator can also be used to pro- E;=—, (1)
duce controlled entangled states between a pair of JJs. Alter- 2e
natively, when both qubits are detuned from the resonato
the resonator produces a weéhigher-order “dispersive”
qubit coupling similar to that of a capacitor. The use of me-
chanical resonators to mediate multiqubit operations in JJ- (2)?
based quantum-information processors haqtadthe best of c= o
our knowledgée been considered previously, but our proposal
builds on the intere_sting recent theoretical work by ArMoUris small compared WitlE,, and is also usually smaller than
et al. [33,34] and Ir|$het al.[35] on tr_le enta_nglement of a the thermal energiT. For example,
nanoelectromechanical resonator with a single Cooper-pair
box. In fact, there is currently a big effort to push a variety of 320 neV
nanomechanical systems to the quantum Ili'68-55. E;=2.05 meVX I[uA] and E.=——,
In the next section, we recall the basic properties of large- ClpF]

area, current-biased JJs. In Sec. lll, we discuss our pmpos%erelo[,uA] andC[pF] are the critical current and junction

archlt_ecture, and construct a simple model Hamiltonian tOcapacitance in microamperes and picofarads, respectively.
describe it. State preparation and readout have been de-

scribed elsewhere and will only be discussed briefly. The _ o _
properties of the nanomechanical resonator are also de- A. Semiclassical junction dynamics

scribed here in detail. In the remainder of the paper, we The low-energy dynamics of a JJ can be understood as
discuss a variety of elementary single- and multiqubit operaf|iowing from the equivalent circuit model shown in the
tions central to quantum computation: In Sec. IV, we showinset to Fig. 1, known as the resistively and capacitively
how a qubit state prepared in a JJ can be passed to the ngyunted junction mod¢b6,57], where the “ideal” Josephson
nomechanical resonator, stored there coherently, and lat@lement controls the superconducting comporignaf the

passed back to the original junction or transferred to anothejptal electrical currentg+l, in accordance with the well-
JJ. Two-junction entanglement, mediated by the resonator, ignown Josephson equations

studied in Sec. V. In Sec. VI, we show how our architecture

can be extended to make a large-scale quantum circuit. Our ) ds 2eVv

conclusions are given in Sec. VII. Several immediate exten- ls=losiné and ~——=—". 4)
sions of the present work, including the development of pro-

tocols for universal two-qubit quantum logic, are currently in Here| is the supercurrent flowing through the ideal Joseph-
progress and will be discussed in future publications. son junction elements is the difference between the phases
of the (spatially uniform) superconducting order parameters
on each side of the junction, anis the voltage across the
junction. |, is the nonsuperconducting part of the current,
Our architecture relies on the use of large-area JJs, bias@dmprising the quasiparticle currents at non-zero voltage,
with a currentl,, which can be quasistatic or have oscillatory and any currents flowing through the parallel external circuit

Wheree is the magnitude of the electron charge. In contrast,
the Cooper-pair charging energy

(2)

()

Il. THE CURRENT-BIASED JOSEPHSON JUNCTION

components. The junctions have a large capacit@@gpi-  impedance, the two in parallel most simply modeled as a
cally 1-50 pF and critical currently (in the 10—150uA linear resistorR. Equating the sum of the currents flowing
range so that the largest relevant energy scale in the systerfrough the capacitor, ideal junction, and resistoi,fdeads

is the Josephson coupling energy to
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h? d?s  h% dS
——— +———— +E,sind-9) =0, 5 03
2E.df?  4e’Rdt Asiné-s9) ®

]
wheres=1,/1, is the dimensionless bias current. By rewrit- §
ing Eqg. (5) in the equivalent form <

d?s du dé

— =y, 6
d€ ~ ds dt ©
0.8
it can be interpreted as the equation of motion for a particle © 06
of “mass” &
2 04
ﬁ2 3
= (7) 0.2
2E.
L . . 0.6 0.8 1
moving in an effective potential S
U(8) = - Ej(cos5+s6), (8)

FIG. 2. Barrier height and plasma frequency as a function of the
and in the presence of velocity-dependent dissipation chaglimensionless bias currestHereAUy= 2E, is the barrier height at
acterized by a friction coefficieny=#2/4e’R. Note thatM zero bias, andoy is the zero-bias plasma frequency defined in Eq.
actually has dimensions of massgengti?. (12.

The potentialU(8), which resembles a tilted washboard,
is shown in the main panel of Fig. 1 for a dimensionless biasidvantageous to keepsmaller during actual quantum com-
current ofs=0.1. The zero-voltage state of the junction cor- putation.
responds to the particle or phase variable being trapped in The effect of dissipation, caused in the resistively and
one of the metastable minima present whenl, and the capacitively shunted junction model by the resistaRcean
finite-voltage state corresponds to the phase variable runninige characterized by the number of oscillations at the plasma
down the washboard potential. In what follows, we will as-frequency during the relaxation tinRC, or w,RC. In what
sume Gss< 1, and without loss of generality we can also follows, we will assume that dynamics is highly under-
assume that & §< 2. damped, withw,RC> 1.

The potentialU(d) reaches its minimum and maximum
values in the domain € §<27 at Jp,=arcsins and dmax
=q—arcsins. The depthAU=U(ya)—U(Smin) Of the po-
tential well is

B. Quantizing the low-energy junction dynamics:
The phase qubit

— When the thermal energiggT and energy decay width
AU =2E{\1-¢° - sarccoss], (9 #/RCare both smaller thahw,, quantum fluctuations of
which vanishes as beco_me impo_rtant,_and the Jq ha_s to be treated quantum me-
chanically. This limit was studied in the 1980s as an example
of a single macroscopic degree of freedom—the difference

v y
AU — TEJ(l‘S)SZ (10 petween phases of order parameters—that nonetheless be-
haves quantum mechanicall$8—61. This is also the re-
in thes— 1" limit. gime of current interest for applications to quantum comput-
The curvatureU”(6) at the minimum of the potential is ing.

used to define the junction’s plasma frequency, When dissipation is absent, the low-energy dynamics can

m be quantized by introducing a Lagrangihjp%Mﬁz—U and

_ U (5min) _ sz 1/4 . ! ! . .
=N"v wpo(1 =)™, (1) canonical momenturP= dL/95=M 6 associated with they

=0 limit of Eq. (6). According to the Josephson equatioRs,
which is the frequency of small oscillations éfaboutd,,,,. IS proportional to the charg® or to the number of Cooper

HereM is the effective mass defined in EJ), and pairs Q/2e on the capacitor according tB=%Q/2e. The
J— classical Hamiltonian i$?/2M+U. To quantize the system,
o= |2ely _ V2ECE, (12 e let P=—i%(d/dd), so that[8, P]=i%. Then the quantized
PO e h Hamiltonian is
is the plasma frequency at zero bias. 2
The dependence of the barrier helght and plasmg fre- Hy;=-E.— +U(J), (13
quency on bias current are plotted in Fig. 2. For junctions ds®

appropriate for quantum computatian,g/ 27 is typically in

the range of 1-100 GHz. The barrier height during stateand the dynamics is governed by the Schrddinger equation
preparation and readout is usually adjusted so Mat7iw, ihdp=Hjp. BecausdJ depends ors, which itself depends

is between 3 and 5, but, as we shall discuss below, is iont, H;is generally time-dependent.
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U TABLE |. Energiese,, of low-lying eigenstates as a function of
dimensionless bias currestfor the JJ investigated in Rdf3], with
parameters 1,=21 uA (E;=43.05 mey and C=6pF (E;
=53.33 neV. Energies below are given in units éfw, and are
measured relative tJ(5,,). All dissipation and decoherence ef-
fects are neglected. The first column, Iabeledrhy%, gives the
energies of the corresponding harmonic-oscillator eigenfunctions,

> which are found to be extremely accurate for snsall
3
Junction
FIG. 3. Metastable potential well in the cubic limit, showing the  state|m) m+% s=0.50 s=0.70 s=0.90

barrier of heightAU that separates the metastable stfigg1), and

|2), from the continuum. This figure applies to the case of bias mM=0 0.500 0.500 0.500 0.500
currentss just below 1. The lowest two states are separated in  m=1 1.500 1.500 1.499 1.497
energy byAE. m=2 2.500 2.499 2.498 2.492

m=3 3.500 3.498 3.496 3.485

Naively, the stationary states and energies of the JJ with
fixed s follow straightforwardly from the one-dimensional

eigenvalue problem where Ay, is the superconducting energy gafg

~180 eV for Al junctions. The supercurrent component
Hythn() = emh(d), mM=0,1,2, ... . (14)  then oscillates with angular frequencg\?7—the ac Jo-
sephson effect. The thermal activation regime has been ex-
However, a careful analys[$2] shows that in the presence plored in detail, for various limits of dissipatid63—65. For
of any finite Ohmic dissipatiofnonzeroz), quantum coher- fixed current bias, the thermal activation rate falls exponen-
ence between the different wells U() is destroyed. This, tially with inverse temperature, until the dominant escape
in fact, justifies the use of the washboard potential in the firstnechanism becomes quantum tunnel[58,60,66—-68 At
place: Strictly speakingg is a periodic variable, withs ~ temperatures low enough so that quantum tunneling domi-
physically equivalent tos+27. In what follows, we will nates thermal activation, the qubit state can be observed by
work with stationary states associated with a single potentigMeasuring the tunneling rate, which is strongly state-
minimum (in the domain G< §<2m). It is these stationary dependent. State preparation and readout are discussed fur-
states that are of interest to quantum computation. ther in Sec. llIA. o
Whens=0, the junction contains man(pf order VE,/E,) The barrier heightAU and the energy splittingAE
bound states, the lowest of which are like that of a harmonidthrough its dependence as}) are both strong functions of
oscillator with level spacindiwy. The uniform spacing of the bias currens. The ability to tune the plasmafrgqu?ncy IS
the low-lying levels makes them difficult to address indi-On€ ©Of the current-biased Josephson junction’s great
vidually with a classical external driving force. Therefore, Strengths and weaknesses. It enables the qubit level spacing
state preparation is carried out withjust below unity, in AE to be tuned adiabatically into resonance with another

which case there are only a few quasibound state§UPit or, as in our approach, with a resonator, but it also
0),]1),]2),... present, and the effective potentid(s) be- makes the circuit sensitive to bias-current noise, as charac-

terized by the nonzero derivativiop/ds. Fluctuations ins

comes anharmonic and approximately cubic, as illustrated ifT. X -
Fig. 3. The remarkable 1985 spectroscopic observdeh  Will generate noise and hence decoherence in thg4ap
of these quantized states provided the first clear evidence fd/though current methods of state preparation and measure-
the quantum behavior of the macroscopic phase-differenc®€Nt requires very close to unity(typically near 0.9
variable s. where dwp/ds is unfortunately large, the information-
The lowest two eigenstate)) and |1), define aphase Processing operations we describe below rtit In our
qubit. As stated, in thes<1 limit the potential is anhar- simulations, we find it convenient to work withbelow 0.90.
monic, and the qubit level spacing The energies,, of the lowest four JJ states of the device
used in Ref[3], for a range of bias currents, are given in
AE=¢€ - ¢ (15 Table 1 in units ofiw,. We calculate these energies numeri-
cally by diagonalizing the Hamiltoniahl; of Eq. (13) in a

is somewhat smaller thatw,, wherew, is thes-dependent  p i< 5 harmonic-oscillator eigenfunctions,

plasma frequency. _

The qubit state is also usually measured vgifast below ém= (2"m! Vr’ﬂgs)—1/26—§2/sz(§), (16)
unity: In the absence of thermal or quantum fluctuations i , .
switching to the finite-voltage state occurs when the piadhat are constructed by making a quadratic approximation
current exceeds,. However, in a real junction, the finite- 1
voltage state will occur beforlg reaches,, either because of U(8) = U(Omin) + EU"(5min)(5— Smin)? (17)
thermal activation over the barrier or by quantum tunneling
through it. Once the phase variable escapes into the cotie U(8) about its minimum até,=arcsins. The H,,, m
tinuum, it runs down the corrugated potential, and a voltage=0,1,2,..., arédermite polynomials, and= (65— 6,n)/ {5 iS
V of approximately 2A./e develops across the junction, a recentered and scaled phase variable, with
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TABLE Il. Dipole momentsx,y between pairs of low-lying JJ :‘:sg‘;;zha"iﬁ'
eigenstates for bias=0.90. The entries with dots follow from sym- o \roemmnnoey
metry. Junction parameters are the same as in Table I. ’M\ : ; M

I bi )

(mom’y  m'=0 m=1 m=2 m=3 m@ %L :Eg 5 : L%Ibﬂis

m=0 112 3.46<102 -5.86x10* 7.09x10° readout | | i | readout

o : : it

m=1 . 1.12 4.8% 10—2 —1.02X 10—3 circuit : | : circu

m=2 ' ' 113 6.00¢ 1072 | __two qubitcircuit

m=3 . . . 1.13

FIG. 4. Two-qubit circuit diagram. The computational qubits are
the two JJs in the center, shown as crossed boxes, each coupled to
[ h oE.\ /4 one side of the piezoelectric disk resonator. Each crossed box rep-
= — = <_C> (1 _32)—1/8 (18) resents a real JJ, modeled by an ideal Josephson element in parallel
M, E; with a resistor and capacitor. The current bias and readout circuits
giving the characteristic width i@ of these eigenfunctions, OF each qubit circuit are shown on the left and right sides of the
We find rapid convergence to the values reported in Table ilgure. Note that there is no direct electrical connection between the
as the number of harmonic-oscillator basis states is increase§® qublits.
to include all basis states with energies less thaf,,.,).

Dipole-moment matrix elements be used as phase qubits, and they include the parallel capaci-
tance and resistance shown in the inset to Fig. 1. The disk-
Xmm = (M| 8m’), (19 shaped element in the center of the figure is the nanome-

which will also b d below. ar lculated at bi chanical resonator, consisting of a single-crystal piezoelectric
¢ also be used below, are calcuiated al DRSS i sandwiched between two metal electrodes. Applying a

r:noe-t?\?)olfo';r:gere]:jfs“g?eugsi\?gnIir:1 ?aeglgg’”UZ'I?%ag};Sfjr?ansvoltage across this element produces an electric field be-
with energies less than)(s,,) are included, and the tween the plates, and through the piezoelectric response, a

. ) oo strain in the crystal. Conversely, strain in the resonator pro-
oscillator-strength sum rulggdapted for this Hamiltionian 4 y P

L X duces a charge on the electrodes, whose rate of change con-
are satisfied to better than 99.999%. Because the e'ge”f””ﬁ‘ibutes to theg current flowing through a LJandM denofqe
tions are real, the matrix,,,y is symmetric, and with an

) X . , . self- and mutual inductancdM in Fig. 4 is not to be con-
appropriate choice of overall signs of the eigenfunctions, thg ,saq with the JJ effective mass).

first band of off-diagonal matrix elements can be made posi-

tive. The diagonal elements are also positive here, a conse-

quence of our restriction to the domairs(®< 2. A. Single-qubit state preparation, manipulation, and readout

| esl—hcﬁ‘r?ﬁ?\otnael Sezl%rg%ng:ea(r:eo:;Lyeféc&s?ntfgéqérgg:rg Two of the most critical factors in the design of a success-

about 1.120. The values of off-diagonal elements of the fornful JJ-based quantum-information processor are high-
X1 can be understood by noting that for harmonic-'mpedance bias and high-fidelity readout circuits that do not
m,mt

oscillator states, which in this case are close to the exacﬂiSturb the.qubit dur_ing computatiqn. 'I_'his is currently a sub-
eigenfunctions ' ject of active experimental investigation, and for concrete-

ness we will assume the bias circuit design developed re-
m+ 1 cently by Martiniset al. [3], but we will leave the readout
f A3 ¢ml(9) 6 Pmea(d) = 5 b (200 circuitry unspecified. Our architecture can be adapted to im-
proved readout schemes as they become available.
with £,=4.883x 10°2. The remaining off-diagonal elements,  State preparation and readout are performed Wjtjust
which result from the small mixing of the harmonic- belowl, whereU(é) is anharmonic and shallow. The anhar-
oscillator states, are smaller than these by at least an order pfonicity allows preparation from a harmonically varying
magnitude. bias current, which is tuned to couple to only the lowest two
states. Theg0) state is prepared by waiting for any excited
component to decay. The stdt®, or a superpositiony|0)
+|1), is prepared by adding radiofrequencf) components
We turn now to the main focus of our paper, the descripOf magnituded; andI; to the dc bias current, in the form
tion of a solid-state quantum-information-processing archi
tecture consisting of a network of current-biased Josephson _ c S o
junctions coupled to nanoelectromechanical resonators. We 1o(0) = lgo+ Iy coS @) + I Sin(et), (2Y)
will first consider a single nanomechanical resonator coupleavith 14, and I3 all varying adiabatically(slow compared
to one or two JJ qubits; the extension to larger systems willvith the frequencyAE/#). In Eq. (21), the origin of timet
be considered below in Sec. VI, as well as in future work. =0 is taken to be when the beginning of the rf pulse is
The complete circuit diagram for the two-JJ circuit is applied. Whenw,; is nearly resonant witlAE/#%, the qubit
shown in Fig. 4. The two central crossed boxes are the JJs will undergo Rabi oscillations, allowing the preparation of

IIl. ARCHITECTURE AND MODEL HAMILTONIAN
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arbitrary linear combinations d0) and|1). The associated TABLE Ill. Parameters characterizing the piezoelectric resona-

Rabi frequency tor simulated in this paper.
E;\ AE\?
Q= J<M> +<wﬁ——) 22 _ _ .
h h Piezoelectric material AIN
. ~3
depends on both;=1,;/15 and the detuning. All states on the M.ass dgnsn;p 326 g cm
Bloch sphere may be prepared in this manji#&t]. Dielectric constankss/ € 10.7
Readout of a JJ state|0)+3|1) is performed by then Elastic stiffnesa; 395 GPa
tuning w;; into resonance witie,—€,)/#%, thereby exciting Piezoelectric modulussz 1.46 Cm2
the qubit component in the) state up td2), out of which it Piezoelectric efficiencyy= €2,/ e35Ca3 0.057
quickly tunnels, thereby resulting in a mgasurementﬂi;.f Enhanced stiffnesgss= (1+7)Css 418 GPa
Martinis et al.[3] have established that a smgle-shot readoutyg ;ng velocity = Vm 11.3 km st
of the JJ statef0) and|1) can be performed with 99% and _. .
. Disk radiusR 0.230um
85% accuracy, respectively. ) )
Disk thicknessh 377 nm
B. Nanomechanical resonator Dilatational frequencywg/ 27 15 GHz
Frequency in Kelviniwg/ kg 720 mK

The second important element in our design is the use o
piezoelectric nanoelectromechanical disk resonators, witl
dilatational-mode frequenciesvy/27 in the 1-50 GHz
range. Piezoelectric dilatational resonators with frequencies

p;=2 sin)-(

esonator capacitangeg 0.042 fF

in this range, and quality factof3= w,7 of the order of 18
at room temperature, have been fabricated from sputtered
AIN [69,70. Herer is the energy damping time. The radius
of the disk is denoted bR, andb is its thickness. In Ref.
[51] we presented resonance data down to 4.2 K for

hw0> 37,
e hwo/2kg T 24
kgT (24

of thermally occupying the first excite@ne-phonop state,

gphereby producing a mixed state instead of the desired pure
honon ground state, is smaller tharr3rhe mean number

1.8 GHz AIN resonator. The observed low-temperatQref na(fiwy) of phonons present in the dilatational mode at

3500 corresponds to an energy lifetimeof more than R p . .
300 ns, already sufficient for most of the operations de100 MK, or “excitation level 8f the corresponding harmonic
scribed below. This is to be contrasted with the previouso_sk?"l_ator]; IS ?_lso less than 10 Hereng(e) is the Bose dis-
state-of-the-art 1 GHz SiC cantilever beam resonator demor"eution function.

. . In the simulations below, we will assume a nanomechani-
strated in 200371}, which has nearly an order of mag- . > ' . .
$71] L y 9 al disk resonator with the parameters given in Table Ill. The

nitude smaller at the same temperature. The unprecedentﬁ? K b is ch 0 ai dilatational mode f
performance of our resonator is a consequence of the use ICKNesso 1S cnosen 10 give a dilatational mode Irequency
wol 27 of 15 GHz. This frequency is convenient for simula-

AIN, which i intrinsically hi terial[72], and th : X
which is an intrinsically highQ material[72], and the tion because, when coupled to a JJ with parameters corre-

use of the dilatational vibrational mode. dina to that of Ref3]. the bi ¢
The dilatational mode of interest is an approximately uni-SPending to that of Re{3], the bias curren

form oscillation of the thickness of the disk, which produces S V4 2
R e . . . . S = \’l ((1)0/(1)’)0) ( 5)
a nearly uniform electric field in a direction perpendicular to
the disk. For a disk with large aspect ratib, the dilata- required to tune the qubit level spacidde into resonance
tional mode frequency is with fiwg is small enough so that the JJ eigenfunctions can be
_ b 23 taken to be harmonic-oscillator states. The resonator ré&lius
wo = mulb, (23 listed in Table Ill is chosen to make the junction-resonator

wherev is a piezoelectrically enhanced sound speed to béteraction strengtty, to be defined below, 1% dfw, al-

defined below. Although the dilatational mode is not necesthough we will also briefly consider larger resonators with

sarily the fundamental mode of the resonator, we can coupli@rger interaction strengths. The AIN physical constants were

to it by frequency selection, carefully avoiding the other low- Obtained from the review by Ambachgr4].

frequency modes. The frequency in H&3) is that of the We turn now to a calculation of the dilatational mode of

fundamental vibrational mode of a one-dimensional elasti¢he piezoelectric disk, assumifgfb>1. The disk lies in the

string with free ends. For simplicity, we will assume that theXy plane. In theR/b>1 limit, the elastic displacement field

dilatational mode frequency given by E@3) holds even if ~ u(r,t) for the dilatational mode is directed in taedirection,

the aspect rati®/b is not large[73]. and thez component is itself only dependent pandt. Edge
Quantum mechanically, each vibrational madef such a  effects are assumed to be negligible. The vibrational dynam-

resonator, having angular frequeney, is equivalent to a ics for this mode and its harmonics is therefore effectively

harmonic oscillator with energy-level spacifigy,. For suf- ~ one-dimensional.

ficiently high frequency and low temperature, the mode can Let u denote thez component of the displacement field.

be cooled to its quantum ground state: For example, iffo construct the equation of motion fatz,t), we write the

wo/ 2m=15 GHz, thermiwy/Kg is about 720 mK. If cooled on basic electromechanical equations of piezoelectric media

a dilution refrigerator to 100 mK, the probability [75] in the modified form
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1 C. Model Hamiltonian
EZ = _Dz - h33(92U (26) . . . .
€33 Next we derive a model Hamiltonian for a single current-

biased JJ coupled to the dilatational mode of a piezoelectric

nanomechanical disk resonator. The layout is similar to that
(27) illustrated in Fig. 4, except that there is only one junction,

and the gate electrode is not split. Extension to multiple junc-
HereE, andD, are thez components of the electrE andD  tions and resonators will be carried out in Sec. VI. As before,
fields, andT;; is the stress tensogg; is the relevant element we will assume that the junction and resonator states are
of the static dielectric tensor, afg;= €33/ €33, With e33the  long-lived, and any effects of decoherence are neglected. We
piezoelectric modulus. Finallgg;= (1+7)cz3is a piezoelec-  will proceed by returning to the semiclassical description of
trically enhanced elastic modulus, with; denoting the ap- the JJ reviewed in Sec. Il A, including the resonator in the
propriate element of the elastic tensor, and equivalent circuit, and then requantizing the coupled system.

5 Our first objective is to derive an equation fog, the
_ & (29) resonator’s contribution to the electrical current seen by the
€33Ca3 JJ.lesis equal tog, whereq is the charge on the resonator’s

top (ungroundeglelectrode produced by voltage fluctuations
“across and strain fluctuations inside the resonator. Integrating
SI:@q. (26) gives the voltage

and

Tzz: - h33Dz +Aé33‘92u-

is a dimensionless quantity called the piezoelectric effi
ciency. The values of these material parameters for the ca
of AIN are summarized in Table lll. Equatiof26) deter-
mines the relation between the electric field and strain inside b
the resonator, and E§27) determines the stress-strain rela- V=- f
tionship, as modified by the electric field.

Electrically, the boundary conditions are that there is
charge per unit area on the top electrode of a parallel-plate
capacitor enclosing the resonator, and en the lower elec-
trode. Then, in the interior of the piezoelectrd, is uni- u(b,t) — u(0,t)
form, with the value u(t) = 5 (34

b
dz == + hybU (33)
0 €33

cross the resonator and JJ, in terms of the charge on the
electrodes and the spatially averaged strain

D;=-o. (29) in the resonator. Equatiof833) can then be written in terms
Mechanically, the faces of the resonator are assumed to ¥ the total chargej= o#R? on the upper plate as
stress-free. We note from E@27) that wheno#0, this _
stress-free condition requires a fixsttain of —h30/C33 on G = CredV —bhgsU), (39

the upper and lower surfaces of the disk. Note that thesghere Cros= €25mR2/b is the geometric capacitance of the
boundary conditions are generally time-dependent, becau?@sonator(again assumin@/b> 1).

o usually is. _ _ , The resonator therefore produces a current equal to
The resonator has thicknebsand occupies the region 0
<z<b. From the mechanical equation of motiqmtzui l o= Cres(v_ bh33U). (36)

=g;T;; we obtain
—_— The first term in Eq(36) describes a purely capacitive effect,
(% -v?H)u=0, with v=\Csp. (30)  which would be present even in the absence of the piezoelec-
tric disk between the electrodes. We will find that this term
osimply adds the capacitance of the resonator in parallel with
the junction capacitanc€, thereby reducing the junction’s
charging energy. The second term is a consequence of piezo-

The sound velocity in the direction is slightly enhanced
because of the piezoelectric effect. The most general soluti
of Eq. (30), satisfying the required boundary conditions, is

haso(t) o electricity, and will be shown to have two effects: coupling
uzt) = - —2—=z+Re > A, cogk,ze vt (31)  the JJ to resonator phonons and renormalifing
C33 n=0 It will be convenient to write Eq(31) as
where Nasor(t
uzt == 4 sz, @7

k, = nm/b. (32 Ca3
Here we have assumed thatis quasistationary, so thafo where
is negligible. The first term in Eq31) describes a back- w
ground strain caused the electric field in the capacitor, _ —ivkgt
present in the classical limit even at zero temperature, while u(z ReZ,OAn cosnmz/bje (38)

the second term describes harmonic fluctuations about that

strain. Then=0 mode is a center-of-mass translation. Theis the harmonic fluctuation contribution. After quantization,
n=1 mode is the fundamental thickness-oscillation mode othis latter part of the displacement field will come from
interest here; it has an angular frequency given by(28..  phonons. The average strain can be similarly expanded as
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hazo(t) TABLE IV. Parameters for a single JJ coupled to the resonator
Ut)=-——>+3U(1), (39)  of Table Ill. The junction parameters correspond to that investigated
Ca3 Ref. [3].
where
sU(t) = M (40)  Critical currentlg 21 pA
b Josephson enerdy; 43.05 meV
Now, the time derivative of the first term in E¢B9) is  Junction capacitancé 6 pF
itself proportional tol,., S0 EQ.(36) can be equivalently Charging energy, 53.33 neV
written as Zero-bias plasma frequeney,o/ 27 16.4 GHz
~ . Resonant bias currest 0.545
lres= Cred V = bhgzdU)., (41) Junction-resonator interaction strength 0.620 ueV
where Resonant vacuum Rabi frequen@y0)/27 8.79 MHz
E; Cree 42 Resonant Rabi period (0) 113.7 ns
resT q _ y- 72 (42

is a piezoelectrically enhanced resonator capacitanceyand€Xpression(46) is strictly valid only whenR/b>1, but we
is the piezoelectric efficiency defined in E@9). In contrast ~ Shall assume that it is a reasonable approximation for mod-

with that of Eq.(36), the second term in E@41) describes a  erate values oR/b [73]. _

Returning to the inset of Fig. 1, we replate with I, interaction strength varies linearly with disk radisUsing
to the bias current coming from the external circuitry alone fésonator, we obtain
which may have both dc and rf componefgse Sec. Il A. =270

. . ; ! . . =2. eV X Rlum], 47
The semiclassical equation of motion replacing ). is g K l “7)
now that of a particle with a modified mass moving in awhereR[um] is the resonator radius iam. In the simplest
potentialU + 6H,, where qubit storage simulations carried out below, we choge
be 0.230um, in which case the interaction strength is

_ hCredhgsdU 5 (43  0:620ueV. In Table IV, we summarize this and other param-
4 2e(1-y-99) " eters associated with the most basic coupled JJ-resonator sys-
tem.
The classical junction-resonator interaction Hamiltonsédy, The complete Hamiltonian of the system is
is evidently linear in the phase differenée The effective
massM of the particle is given by Eq(7), with E. now H=Hy+6H, with Ho=H;+H.s (48)
reduced to 8/(C+Ciey. The junction HamiltoniarH; depends ors, and whens is

Quantization of thes variable proceeds as in Sec. Il B. time-dependentd, is also time-dependent. We shall address
The quantization of the resonator dynamics is carried out ifhjs issue below in Sec. Il D. Assuming)is constant, the

Appendix A. The resonator Hamiltonigidropping an irrel-  stationary states dfi, may be written as
evant additive constants

mn = [m); ® N)es, 49
Hres:hwoafaa (44) | ) | )3 |>res (49

. ] ) o where m=0,1,2,... labels the junction state and
wherea’ anda are bosonic creation and annihilation opera--=g 1 2, ... is thephonon occupation number of the resona-

tors for dilatational phonons. The junction-resonator interactor, The eigenvalues dfl, are
tion Hamiltonian is found to be

SH=-ig(a-a")s, (45) B = én* fiooh. (50

The|mn) andE,,, of course depend om We will refer to the

where lowest two eigenstates ®i, as the phase qubit, and tE
13%. . or [defined in Eq(15)] as the qubit level spacing, even if there
——3%rest 0 (46)  are more than two quasibound levels in the junction.
eezz\pmRD For many applications it is convenient to write the JJ
3) in second-quantized form, as

gE

is a real-valued coupling constant with dimensions of energy 12miltonian of Eq.(1
We note thagy depends only on the properties of the resona- Hy=S e cle (51)

tor and is independent of the parameters characterizing the 7 e

Josephson junction. The valuegfjuoted in Eq(46) applies

to a fully gated resonator coupled to a single JJ; for a JHere CL and c,,, are creation and annihilation operators for
connected to one-half of a split-gate resonator, such as ithe junction states, which can be taken to be either fermionic
Fig. 4, the relevant interaction strengthgé2. Finally, the  or bosonic because there is only one “particle” in the wash-
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board potential. In this same notation, the interaction Hamil-
tonian becomes

SH=-1ig > Xmm(a—ahchem, (52)
mm’

where thex,,,y are dipole-moment matrix elements defined
in Eq. (19).
An important simplification occurs when only the qubit
statesm=0,1 areincluded in the JJ. In this case, the com-
plete Hamiltonian can be written as .

Xoo Xo1
X10 X11

€ 0 fo_i t
H= +hwga'a-ig(a-al , (53
O €1
with the JJ operators written as matrices in @,|1)} basis.
Recall that the diagonal dipole moments,, do not gener-
ally vanish in the current-biased JJ, but omot too close to
unity they are approximately equal to arcsinin the ap- FIG. 5. Four current-biased JJs coupled to a nanoelectrome-
proximationx,,=x;;, and dropping an additive constant, we chanical resonator. Each junction is connected to a metallic plate on

can succinctly write Eq’53) in terms of the Pauli matrices as the surface of the resonator that covers about one-quarter of the
surface. Because we make use of the fundamental dilatational

_AE b 1 mode, which is spatially uniform in the plane of the resonator, the
H=- ?0'2"' hwoa'a—ig(a—a’)[Xeuo + X010%], qubits are all equally well coupled to that mode.

(54)

where gy is the identity matrix. Note, however, that,
#X11 When s is very close to 1. Finally, when botAE
~hw, and g<AE, the commonly used rotating-wave ap- The probability amplitudes in the instantaneous interaction
proximation of quantum optics becomes valid. Applied to therepresentation satisfy

form (53) or (54), the Hamiltonian simplifies to

[9(0) = 3 el P ESmny,. (57)
mn

iiCmn= > (MnoH = iAdlm'n’ )

HJCE - ﬁ0'2+ hwoaTa_ igXOl(a.U'_ - aTO'+), (55) m'n’
2 « glih) f{odt'[Emn(s)—Em/n/(s)]cm,n,_ (58)
whereo, = (oytioy)/2. Hycis the Jaynes-Cummings model . ) )
of quantum opticgwritten in a basis that is different from Off-diagonal matrix elements of the quantity
that conventionally used there P P
The Hamiltonian in Eq.(48) is equivalent to that of a (mn—=|m'n")s=(mn—|m'n")s (59)
few-level atom in an electromagnetic cavity. The JJ is analo- a s

gous to an atom. The cavity photons here are dilatationalyeermine transitions between the instantaneous eigenstates
mode phonons, which interact electrically with the junctionSg,,sed by nonadiabatic variation fthe diagonal elements

via the piezoelectric effect. Coupling several junctions 10 8yetermine the Berry connection of adiabatic perturbation
nanomechanical resonator, as illustrated in F_|g. 5, the‘ﬂweory. In the smals, quadratic-potential limit, the low-lying
makes the system analogous to several atoms in an electrgy eigenstates are well approximated by the harmonic-

magnetic cavity, except that here the atomic level spacingqiator eigenfunctions given in EGL6). In this case, it can
and electron-photon interaction strength are all externally,o shown that

controllable.
d 1 /m +1
mn—|m’'n’)s= Omm
D. Quantum dynamics in the instantaneous basis < d&5| )s 1 —sz< 2 mml
As discussed above, the Hamiltoni&ty for the JJ de- m
pends on the dimensionless bias currgnand is therefore -1/ 5 5m,m’—1) Snny

usually time-dependent. It will be useful to expand the state
of the coupled system in a basis of normalized instantaneous 1 des( (m' + )(m' +2)
eigenstatesmn), of H,, defined by +——

65 dS 2 'm,m’+2
Ho(s)imnys= E((S)|mn), with s=s(t). 56 ——
O( )| n)s mn( )| >s () ( ) \’,m,(m, _ 1)
We assume that at tinte-t,, the bias current is constant and - 2 -2 | Snt (60)

the system is prepared in a pure state. tFot,, we write the
wave function, suppressing the time dependencgtpf as where
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de st and thec,,, remain approximately constant. The qubit level
E: 11-9) (61) spacingAE is now adiabatically changed to the resonant
value, reachingiw, at timet=0. Then att=0 we have, ap-
There are no diagon#&Berry connectiohterms in this limit.  proximately,
The terms in Eq(60) proportional tod€/ds result from the

change of curvature at the minimum of taeharmonicpo- Crnn(0) = (eSivo + 50mt) &no- (65
tential U(8) with changings. As we shall discuss below, the first nonadiabatic corrections

to Eq. (65) principally affect the phases of tHé0) and|10)

IV. QUBIT STORAGE AND TRANSFER components of the wave function, that is, the phasesanfd

B. The wave function at=0 is therefore
We now turn to a discussion of some single-qubit opera-

tions made possible by the nanomechanical resonator. In par- |#(0)) =~ a€ ~(i17) [ dtEoqlsit ooy + e i)Y JEdsO]10),
ticular, we show that any phase qubit state (66)

lihy) = |03+ B|1);  with [of*+ B[P =1 (62) Next we invoke the RWA, which allows us to write Eq.

produced in the current-biased JJ can be written to and cd®9 @S
herently stored in the phonon-number states of the resonator,

. g - i
as Con = %\’m‘me' 411
|’ﬂres> = a|0>res+ B| Dies (63
yielding a quantum memory element. In E§2), the states Cin=- %\;’n + 1Xg1€7“d'Co 1. (67)

|0); and|1); are the lowest two junction eigenstates shown in
Fig. 3, whereas in Eq(63) they denote the vacuum and We have also assumed that all dissipation and decoherence
one-phonon states of the resonator’s dilatational mode. Latefnechanisms are negligible over experimental time scales.
the qubit state can be reversibly retrieved or transferred to Burthermore, as discussed in Sec. Il B, we can tgkéo be
second Josephson junction. positive with no loss of generality. Using Eq$5) and(67),

We will examine qubit storage and transfer in two stagesive then obtain, by Laplace transformation,
First we will develop a simple analytic theory based on the

adiabatic approximation combined with the rotating-wave Coolt) = @,
approximation(RWA) of quantum optic$76]. The adiabatic

approximation assumes that the bias currenthanges Coa(t) = ﬁﬂs ( )elwdtIZ
slowly on the frequency scalkE/7%, a requirement thal- 2

though not always desirablean be easily satisfied in prac-

tice. The RWA for a phase qubit is valid when two conditions _ 9 Loy @ o2
are met: Cyo(t) B{COS( i sin| - | el
(i) AE andfw, are close to each other on the scale of the
resonator’s energy widthwy/Q. Here Q is the resonator’s cu® =0, (69)

dilatational-mode quality factor. Transitions to higher levels )
Im); with m>1 are far off resonance on this same scale. ~and allcy,(t) with n>1 equal to zero. Here

(i) The interaction strength is small compared witiAE [ 20%1
(or ). Qwg) = V[QO) P+ wi with Q0) = =" (69
We will then supplement the analytic theory with numeri-
cal simulations based on the full Hamiltonian of E48), s the vacuum Rabi frequency, aney= w,—AE/# is the
using realistic values of all parameters involved. resonator-qubit detuning)(0) is the Rabi frequency on
resonance. Probability amplitudes at selected times are sum-
A. RWA analysis marized in Table V. The wave function at later tintesO0,

To understand qubit storage, consider a single junction when the system is on resonance, is therefore

coupled to a nanomechanical resonator as described by the
Hamiltonian of Eq.(48), and expand the wave function for
the combined system as in EG7). The probability ampli-
tudescy(t) in the instantaneous interaction representation (Ot (ih) 0t i
mn + Bsin| — |e M dEulst]gieot| g1)

then satisfy Eq(58). 2

We start at some timg <0 with the JJ prepared in the Ot
state(62) and the resonator in its ground state, + I3c05< 5 ) (i) [ Ey I S(0) ] oo 10) |, (70)

tp)) = (c|0);+ B|1);) ® |0),es= |00} + B|10). (64 .. . . .
[#(10)) = (@|0),+ B|1)) © [Ohres= a{00) + S[10). ~ (64) wheres’ is the resonant value of the dimensionless bias cur-
We assume that the qubit and resonator are detuned and thaht. We emphasize that the result in E@0) is only ap-
g<fiwp. Then thelmn) in Eq. (64) are close to eigenstates, proximate.

() = e—iEoO[S*]t/h[ e i) f?othoo[s(t)]|00>
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TABLE V. Probability amplitudescy,(t) for a phase qubit comes from nonadiabatic effects during the ramping(of,
coupled to a nanomechanical resonator, at time zero when they a{ghich leads to errors in E@65). These are principally phase
brought to perfect resonance, as well as one-quarter, one-half, argrors incy, andc,,, which results in a significant qubit-state

three-quarters of a vacuum Rabi-oscillation period later. dependence to the memory fidelity, with states closer to the
south pole(|1) state of the Bloch sphere being stored less
Amplitude  t=0  t=7/2Q0  t=7/Q  t=37/2Q accurately. We shall return to these issues in future work.

oo N N N N ~ Totransfer a qubit_stata|0>31_+[>’|1>31from junction 1 to
c 0 81\2 B 81\3 junction 2, the state is stored in the resonator’s_dnata_tlonal
01 ‘2 Ve phonon number states a$0),s+ B|1);es After junction 1 is
C10 B BIN2 0 —BIN2 taken out of resonance, the bias on the junction 2 is varied to
C11 0 0 0 0 bring it into resonance with the resonator for one and a half

Rabi periodgQ)At=3), resulting in the creation of the state
@|0);,+ B|1);, in the second junction(Again, the case where

After a pulse duratiort, the JJ is again detuned from the e transferred state is|@) or |1) is exceptional, and a half of
resonator. The final wave functions, in the instantaneous iny Rapi period is sufficientThe original qubit state is there-

teraction represe_ntation, for sevgral important _ChOiCGAtOf fore transferred from one junction to another. It will be pos-
are summarized in Table VI. In this representation, the phasgiple to verify experimentally that this has occurred by read-
factors exp—(i/#) [ dtEqn(s)] appearing in Eq(57) are sup-  ing out the second junction at the end of the transfer

pressed. _ _ operation.
WhenQAt=7/2, the system is held in resonance for one-

quarter of the vacuum Rabi period, and the final state is

entangled. In particular, when the qubit begins completely in B. Simulating storage and transfer
the excited stateg=0 andg=1, the resulting state is The analysis above, which is based on the adiabatic and
101) +|10) rotating-wave approximations, implies that JJ states can be

— (71) stored, transferred, and controllably entangled with perfect
V2 accuracy, and—uwith an appropriate choicegefarbitrarily
uickly. This is not the case: The actual fidelity is determined
is 271201~ [10)). y the corrections to these approximations. In this section,
we shall study the storage and transfer fidelities by direct

After half a Rabi period, of)At=1r, the phase qubit and : : . .y e
resonator states are evidently swapped. The cavity-QED angumerlcal integration of the time-dependent Schrddinger

log of this operation has been demonstrated experimentallyhuation'
in Ref.[77]. This operation is extremely useful in our archi- We begin by simulating the storage of a JJ state in the

tecture. In addition to allowing the resonator to be used as honon-number states of a resonator. To do this, we solve the

quantum memory element, it can be used as a quantum b me-dependent Schrodinger - equation for the  coupled
; ' junction-resonator system by numerically integrating the
;%:Laenféigﬁaigtm state from one JJ to another attached to t eoupled equations8) for the casdsee Eq(62)]
To retrieve a state that has been stored in the resonator, =0 and B=1. (72
the junction is again tuned thw,, except this time for one _ _ N .
and a half Rabi periods, 0fAt=3m. This longer pulse This corresponds to the phase qubit starting in the excited
length requirement follows from the RWA equatioig). An elgenstatd1>3._The resonator starts out in its grounql state
exception is the special case where the stored statfjsoa  |Qres OUr main result, which is shown in Fig. 6, will be
1), and one does not care about the overall phase of the fin4iScussed in detail below. _
result, as in our Ref51]. We have extensively simulated the 10 €nsure the reliability of the numerical results, we em-
use of the resonator as a quantum memory element, and i40Y€d a variety of ODE integrators, including both explicit
speed and fidelity as a function of coupling strength andnd |mpI]0|t algorithms, as _we!llas exa_ct diagonalization for
position of the stored state on the Bloch sphere. With dimenS@Ses With constarg. No significant differences were ob-
sionless interaction strengtig%w, around a few percent, served. The results presented were obtained with the fourth-
the RWA is quite reliable, and the main source of errororder Runge-Kutta method with a time step of 1 fs, which
guaranteed that probability was conserved for the duration of
. o | .
TABLE VI. Approximate final wave functions, in the instanta- thneercalcl‘,:\l/aetllsti)sn ;g db(;aittce)lrefrr?naonmz?{tgnazﬁ.ri; (()als:r[;gson JL;r;ctlon
neous interaction representation, after the phase qubit and resonafore' 9 ! m P . . I’)t,ﬁm(' .
have been in resonance for a time a function of s were calculated using the diagonalization
method discussed in Sec. Il B, and found to be extremely
close to that of a harmonic oscillator in the range of bias

Similarly, after three-quarters of a Rabi period, the final stat

QAt Final state Operation
currents employed here.
2 |00+ B(|01)+]10)) /2 entangle We simulate a large area, current-biased JJ with param-
- 0);® (|0)rest Bl Lred swap eters corresponding to that investigated in R8f, namely
37/2 |00+ 801 -|10) /12 entangle E;=43.05 meV andE.=53.33 neV. The zero-bias plasma

frequencyw,o/ 2 is therefore 16.4 GHz. A 15 GHz resona-
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I T T T TABLE VII. Final-state amplitudes,,, after qubit storage. Sys-
1000 tem parameters are the same as in Fig. 6.
o0sF mm .
b 0.990; o .
% o6 G .. S N S 7 Probability amplitude Remn Im Cypy |Cmn‘2
3
2 B
g04r \ - Coo -0.046 0.016 0.002
0.2+ i Co1 -0.061 0.992 0.987
. . . Cio 0.049 -0.007 0.002
%70 20 N cn 0.045 -0.030 0.003

FIG. 6. Phase qubit storage. The solid descending curve iggken to bec(0)=6mdn. The bias is held as=0.40 for
|c10(t)]?, the interaction-representation occupation probability of theg s As shown in Fig. 6, the occupation probability of the
|10 state, calculated numerically for the junction of R¢&] |10 state remains close to unity during this time interval. All
coupled to the 15 GHz piezoelectric resonator described in Tablgther states remain essentially unoccupied. After 5 ns, the
lll. The dashed curve is the same quantity calculated from the angsjag cyrrent is adiabatically changed to the resonant value of
lytic RWA resuilts of Sec. IVA. The solid ascending curve is o= 545 Qur simulations show that the success of a qubit
|coa(t)[2. The dotted curve shows the time dependence of the d'menétorage depends somewhat sensitively on shapeof the

sionless bias currestt), which is varied to bring the phase qubit in bias-current profile(t) in the transition region. In particular
resonance with the resonator after 5 ns. The Rabi period on reso- find that the ti duri hick ch .f the off ’
nance, whens=0.545, is 113.7 ns. After the storage operation,We n at the ime during whica changes Irom he ofl-

Ic,02=0.002 andcy,|2=0.987. The inset shows an enlarged view of resonant value to the resonant one should be at least expo-
|cyo(®)|? during the ramping up s(t). ngntlally I_ocallzed. The. result prese_nted in Fig. 6 was ob-
tained using a trapezoidal profile with a crossover time of
tor will be in resonance with this junction whes¥0.545, 1 ns, which should be compared with the resonator and on-
comfortably far from the regime near 1 where bias-current resonance qubit period of 0.1 ns. Similar results were ob-
fluctuations are most destructive. The nanomechanical res@ained using Gaussian profiles. The JJ level spacing is tuned
nator we simulate has the parameters listed in Table lllto 7w, for half of a Rabi period. During this time interval,
which results in a junction-resonator interaction strengith the junction interacts strongly with the resonator, and energy
given in Table IV. The resonator thicknebss determined  is exchanged back and forth between the two systems. The JJ
by the desired 15 GHz frequency of the thickness-oscillations then detuned from the resonator. Some of the final prob-
mode, and the disk radilg can be used to varg without _ pijity amplitudes are given in Table VII. For the small value
apprec[ab!y affecting th".it frequer_lcy. As we ”OtﬁTd in Eq.of g used here, chosen so thgthwy=0.01, the numerical
(47), g is linearly proportional taR (in the largeR/b limit). results for the|c,J? are in excellent agreement with the

We have used this tunability to ensure that the system is i T
the regime where the RWA analysis of Sec. IV A is appli-%W'g'reHggV:rvﬁrr{ti:h:neRVg\llsegrfod'g\t/'grr: ;?T:E;IT; sgﬁjseeg 0?1: the
mn .

cable. Below we will briefly examine results of simulations - - .
with larger values ofy. Ther)cla are more than 400 qua:siboundOther words, the RWA is better at predicting the moduli of
the ¢, than their phases.

stategm); in the junction whers=0.545. To the accuracy of nn - ’ . . )

the numerical results reported here, we find no sensitivity to [t IS intéresting to examine the extent to which higher-

the number of JJ states included in the calculations as long &€rgy states of the junction and resonator become excited

at least four states are included. The resonator, of course, h8sring the storage operation. In Fig. 7, we plot the occupa-

an infinite number of phonon-number eigenstdt®g, and  ton probabilities of the state@0) and|21), both of which

the results shown here have been calculated by including tH8VOIVe the higher-lyingm=2 junction state. Similarly, in

four states lowest in energy, as increasing beyond this nunf19- 8 we plot the occupations ¢02) and |12), which in-

ber led to no significant changes. volve then=2 oscillator state. In all cases, the excitation of
We turn now to a discussion of Fig. 6. At time zero, the higher-lying states is negligible.

current bias is=0.40 and the wave-function amplitudes are A few comments about these results are in order: The
observed sensitivity to the shapesgf) can be understood by

4 . . T .
6x10 ] 3
o a 8x10
K4x10 7 3
o 6x10
2107 N g 3|
S0
% 2107
0
6x10°° . 0
o 6
F4x10 J 2107
- r [y]
2x10° 1 e

30
t (ns)

50

FIG. 7. Occupation of the higher-lyingg=2 junction state dur-
ing qubit storage. The upper plot s, and the lower plot is FIG. 8. Occupation of the higher-lying=2 resonator state dur-
|c12. Both quantities would vanish in the RWA. All junction and ing qubit storage. The upper plot jso,%, and the lower plot is
resonator parameters are the same as in Fig. 6. |c15%; both vanish in the RWA. Parameters are the same as in Fig. 6.
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1
|
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£0
Eoel =
k-
go4r £08
F 0.6
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£02
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FIG. 9. Qubit storage with arctangent bias-current profile. Al FIG. 11. Storage of qubit states on the equator of the Bloch
system parameters are the same as in Fig. 6. The numerical resgiRhere(a) Here the initial state is 2/%|0),+|1);) ©[0)es The solid
for |c92 shown as a solid descending curve, is entirely differentdescending curve is the squared overlap with the interaction-
from that predicted by the RWAdashed curve even though the representation state #%/00)+|10)), and the ascending curve is the
difference between thet) profiles used here and in Fig. 6 is small. occupation of 2Y%(/00)+|01)). The dotted curve is(t). (b) The
The solid ascending curve |sy;(t)2. The qubit state is not cor- initial state is 21/%|0);+i|1);) ® [O)es The descending and ascend-
rectly stored in the resonator. ing curves are the occupations of'2(|00)+i|10)) and 2%%]00)

+i|01)), respectively.

recalling that in the _absence of any dissipa_tion or decohery i oduces phase errors into H65), the “inital” amplitudes
ence, the RWA requires the qubit to beactlyin resonance ot get swapped. This can be circumvented to a considerable
with the nanomechanical resonator. Therefore, it is necessagy tant by choosing an optimum value of ibfé-resonanbias
to brlng the two systems into resonance as quickly as POyrrent. In Fig. 11, we show results of the successful storage
sible without violating adiabaticity. The power-law tails as- of the qubit states 2/%|0)+|1)) and 2%/2(|0)+i|1)), which
sociated with an arctangent function, for example, lead tq ’

considerable deviations from the desired RWA behavior, a%;?uc;]r;(tjhferoergLf[ﬁteorreosfot;\:tgrloch sphere, usir@.180 when

we demonstrate in Fig. 9. We expect this sensitivity to be Finally, in Fig. 12, we present results of simulations of
present in real systems as well. We also find that the vaIidit){WOjuncti’Ons coﬁpled to a resonator. The JJs are the same as
of the RWA requireg to be considerably smaller thaiw,. in Fig. 6, but the resonator in tﬁis case has radris
The ratiog/fhw, for the_ system si_mL_JIated in Fig. 6 is 1%. :0.45{9”}]' Because the upper gate is now spli,
When _the resonator disk radiis increased to_2.3cm, .. =0.620ueV for each JJ. The instantaneous eigenstates of the
g/fiwg is then only 10%, but the RWA already fails consid- uncoupled system can be written [agm,n), wherem, and
efab'y- This strong—couplin_g brgakdown s demonstrated ir:zwz are the eigenstates of the junctioné a,ntt the prlwonon
E(I)%rslt(e). ;I;]f;evraelsuc;nigtt 522('1 piﬁ”gid ;n ;h':n(éaieo 'i5$ 1;';102:'63_0 umber of the resonator. The phase qubit is first stored in the

' . gs. T resonator, as described above, and is then passed to the sec-
guence of the RWA ana_tlySls, and better fidelity could beond identical junction. The result is a transfer of the qubit
obtained by choosindt differently.

Up to this point we have only discussed storage of thestate|1> from one JJ to another. Only half a Rabi period of

simple qubit staté1). Storing general qubit states of the form resonance with the second JJ is needed for this transferred

L o . . state; in general, one and a half periods are required. The
|0)+ B]1) follows similarly, although achieving high fidelity probabilit;%J amplitudes after the tra%sfer are givecrll in Table

requires more care. The reason is that the ramping wgt)of Vil
1 T T T T
- 100 010
0.8-' 001 b
= 0.6 A

1

08
%0.6— Eos6
T

 VAVAN

3 4 5 6
t (ns) t (ns)

FIG. 10. Qubit storage in a larger resonator. Here we simulate FIG. 12. Qubit transfer between two identical Josephson junc-
qubit storage in a 15 GHz resonator wiR=2.3 um, so that tions. The descending solid curveldgog(t)|?, the probability for the
0/hwy=0.10. All other resonator and junction parameters are thdirst junction to be in them=1 excited state, and the rest of the
same as in Fig. 6. The solid descending curvécig?, and the  system to be in the ground state. The state of the first junction is
dashed curve shows the desired RWA behavior. The solid ascendirgjored in the resonator as in Fig. 6, the peaked curve giving
curve is|cg>. The RWA breaks down here because of the strongelicy(t)|2. The ascending curve igq;(t)|? the probability for the
interaction strength. The dotted curve s&). Qubit storage fails second JJ to be in the excited state. The solid and dotted trapezoidal
again. curves show the bias currerggt) ands,(t) on the two junctions.

032311-13



M. R. GELLER AND A. N. CLELAND PHYSICAL REVIEW A 71, 032311(2005

—

TABLE VIII. Final probability amplitudesx:mlmzn after transfer-

ing a qubit state from one junction to another through the nanome- 08

chanical resonator. Transfer succeeds with a probability of better

than 97%. ;%o.s
» . 5 S 0.4

Probability amplitude Rem myn IM Crnymyn |Crmymnl &
0.2

Coo1 -0.075 0.003 0.006
Coto 0.591 0.790 0.974 % EOUNC R
C100 0.023 0.038 0.002

FIG. 13. Preparation of entangled Josephson junctions. The dot-
ted curve is the probability for the system to be found in the
V. TWO-JUNCTION ENTANGLEMENT interaction-representation state%(|100-|001)), and the thick

. solid curve is the same for22(100-|010). The thin solid and
The nanomechanical resonator can also be used t0 Pro: od fines arsy(t) ands,(t), respectively

duce states where the JJs are entangled, with the resonator
remaining in its ground state, unentangled with the junctions, _ o
We assume that two identical JJs are attached to the sarifid @ completely scalable geometry without intrinsic size

split-gate resonator. The instantaneous eigenstates of the yHmits.

coupled system are written dsymyn), wherem, andm, The I_-|ami|tonian. for an grbitrary_large—scale quantum-
label the eigenstates of the junctions amds the phonon nformation processing circuit consisting 8fl phase qubits
number of the resonator. and A nanomechanical resonators is constructed as follows.

The foundations for this operation have already been ext€t1=1,2, ... N label the resonators, which for simplicity
plained in Sec. IV: According to Table VI, we can prepare anV& assume to lie in a two-dimensional plane, and Jet
=1,2,... M label the junctions. Typically there will be

entangled state of two JJs by bringing the first junction, pre- . .
viously prepared in the staid),; into resonance with the Many more JJs than resonators. Each junction can couple to

resonator fone-quarterof a vacuum Rabi period, qpAt ~ ©N€ Of two resonators, subject to the constraint that a reso-
=/2, which produces the interaction-representation stat atqr can support on the order Of. 10 junctions, and tha_\t, for
2-12(]001)+|100)). The first 3J is now maximally enangled abrication convenience, bus qubits should connect adjacent

c[esonators. The Hamiltonian for such a quantum computer,

state. After bringing the second junction into resonance fofdnoring state preparathn, manlpulatlon,. and readout cir-
cdtur[ry, as well as all environmental coupling, energy relax-

half of a Rabi period, the state of the resonator and second. )
junction are swapped, thereby “passing” the resonator’s coma—‘t'on’ and decoherence, is
ponent of the entangled state to the second junction. After
detuning the second junction, the system is then left in the
interaction-representation state

1100 -[010 _[10,- [0,
\E V’E

with the resonator, while the second junction is in the groun

— T T
Hge= E hoaya + E €3rmCynCam
| Jm

=i 2 9@y~ a)Xymu ChpCan - (74)
@ |O)res (73) D mnt
Here w, is the dilatational mode frequency of resonat,oexilT
The two Josephson junctions have been prepared in thend a, are dilatational-mode phonon creation and annihila-
maximally entangled Bell state%2%(|10);-|01),). To pro-  tion operators satisfyinbaq,ar,]:ﬁ”,, €)mis the spectrum of
duce the state 2/%(|10),+|01),), the QAt=7 swap pulse
should be replaced with @At=37 swap pulse.

In Fig. 13, we present the results of a simulation of en-
tangled state preparation. The JJs are the same as in Fig. 6,
and the resonator has radit&s0.459um, resulting in an
interaction strength of=0.620 eV for each JJ. The desired
entangled state is prepared with a probability of about 95%.

VI. LARGE-SCALE QUANTUM CIRCUIT

A strength of our architecture is scalability: By introduc-
ing additionalbusjunctions coupled to a pair of resonators, {{:}}s-fold coupled resonator
each resonator with a slightly different dilatational mode fre- % Josephson qubit
quency, the quantum states of the resonators can be swapped.
This makes it possible to construct a large JJ array, with all FIG. 14. Architecture for a large-scale JJ quantum computer. In
phase qubits coupled. We call this layout a “hub-and-spokeaddition to the junctions coupled to a single resonator, as in Fig. 5,
network, an example of which is shown in Fig. 14. Each bushere there are additional bus junctions for transferring states be-
qubit “spoke” couples each adjacent resonator “hub,” allow-+tween different resonators.
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phase qubitl, andc! andc;,,, are creation and annihilation APPENDIX A: QUANTUM MECHANICS
operatorgeither bosonic or fermionjcfor statesm in junc- OF THE PIEZOELECTRIC RESONATOR
tion J. The matrixg,; gives the interaction strength between
resonatot and junctionJ; bus junctions have nonzegy, for

two values ofl, computational junctions will have only one
nonzero element. In Eq74), we have also neglected any

direct capacitive interaction between phase qubits connect . )
to the same resonator. by the identity operator.

As we will demonstrate in future work, the resonator can 1€ quantization of the fluctuation terfu(z,t) proceeds
be used to mediate two-qubit quantum logic between IOhas%imilarly to that of ordinary phonons, although we have to
qubits connected to that resonator. The quantum circuit off€at the zero-frequencyn=0) mode separately. First we
Fig. 14 then allows quantum logic to be performed betweergonstruct a complete set of orthonormal eigenfunctions from
any pair of computational qubits, sdy andJ,. This is ac-  Ed- (38), namely

complished by swapping the state storedljrwith a phase
qubit J; attached to the same resonatodgasperforming the f(2)= 2= 6n0 cognmzb), n=0,1,2 (A1)
logical operation onJ; andJ;, and then reswappind, and " b ’ B

J,. Any pair of computational qubits in Fig. 14 can also be _ _ ) )
controllably entangled this way. These eigenfunctions can be shown to satisfy orthonormality,

Here we quantize the vibrational dynamics of the piezo-
electric resonator. In the quantum limit, the first term in Eq.
(37), which describes the background strain generated by the
e@argea(t), becomes trivially quantized: It gets multiplied

b
f dz 122 = Sy (A2)

VII. DISCUSSION 0

We have introduced a design for a scalable, solid-statend completeness,
quantum computing architecture based on the integration of
nanoelectromechanical resonators with Josephson junction S
phase qubits. Quantum states prepared in a Josephson junc- 2 F,00(X) = 8(x=x), (A3)
tion can be passed to the nanomechanical resonator and n=0
stored there, and then can be passed back to the Originﬁlthough in our case the(
junction or transferred to another with high fidelity. The reso-
nator can also be used to produce entangled states between

z) are purely real.
aThe quantized displacement-fluctuation field is given by

pair of Josephson junctions. Universal two-qubit quantum o P

logic will be addressed in future work. The architecture is dU(2) = fo(2)29+ > —[fn(z)an+f;(z)al]’
analogous to one or more few-level atoms in an electromag- =1 Y 2pinvky

netic cavity, and the junction-resonator complexes can be (A4)
assembled in a hub-and-spoke layout, resulting in a large-

scale quantum circuit. and its associated momentum dendity= pj,du is

The calculations presented here have ignored all effects of

dissipation and decoherence, with the assumption that the * hor ok

associated lifetimes are longer than a few hundred ns. Thisis  I1(2) = fo(2po— 1 > \| —2020f (2)a, - fi(2)al],

not unreasonable given the current experimental situation. n=1 2

Nor have we attempted to perform the operations as fast as (A5)
possible, and we expect there to be considerable room for

improvement in both speed and fidelity. wherek, is defined in Eq(32). Herez, is thez component of

Finally, we emphasize that many of our results will apply the resonator center-of-mass coordinate operatpis the z
to other resonator- or oscillator-based qubit coupling metheomponent of the center-of-mass momentum operator, and
0ds[15,17-32. In particular, the promising design being de- [z,,p,]=i%. Then=0 term is excluded in the summations of
veloped at Yalg15,28,29, using charge qubits coupled to Egs.(A4) and(A5) because the corresponding frequenky
superconducting transmission line resonators, is very similayanishes; its separate inclusion in the form given above will
to the architecture discussed here. enable the use of the completeness relatid) in the analy-
sis below. Thea, anda,ﬁ are bosonic phonon annihilation and
creation operators satisfyirfgan,al,]zénn,. Pin=Mdb is
ACKNOWLEDGMENTS thelinear mass density of the cylindrical resonator, with,

the resonator’'s mass. Using E#3), it can be shown that
It is a pleasure to thank Steve Lewis, Kelly Patton, Emily

Pritchett, and Andrew Sornborger for useful discussions. [u(2),I1(Z)]=[du(2),I1(Z)] =ikd(z-2'), (AB)
M.R.G. was supported by the National Science Foundation

under CAREER Grant No. DMR-0093217. A.N.C. was sup-as required.

ported by the DARPA/DMEA Center for Nanoscience Inno-  The final expression for the quantized displacement field
vation for Defense. is therefore
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EFES

o (a+ah), (A9)

uzt) = -2 4 @zt 8U ~ -
Ca3
okt s e ikt where{, .= \Vh/M g is the characteristic size of quantum
+E 2 k 5 [fa(@ae™ + f(2)ae” ], fluctuations in this mode, and whete, is the dilatational
Plin¥ frequency defined in Eq23).
(A7) Assuming a harmonic vibrational dynamics for the reso-
nator, and ignoring the center-of-mass motion, the resonator
wherezy(t) is in the Heisenberg representation. If the Hamil- Hamiltonian is
tonian for the center-of-mass dynamics p'§/2Mres then *
25(t) =29+ (po/ Me9t. Note that the center-of-mass mode does Hyes= >, fivkn(ala, + 3). (A10)
not produce any strain and does not enter into our final re- n=1

sults. Keeping only then=1 dilatational mode, and dropping the
Using Eq.(A7) leads to additive c-number constant, leads to E¢4). Using Eq.
(A10), we then obtain

:"n%d resvk (@ +20). (A8) [Hres(SU] 2'2 Vi “(a-al). (ALD)
nodd res

If we include only the fundamental dilatation@=1) mode  The n=1 term on the right-hand side of E¢A11), when
in Eq. (A8), we obtain(suppressing the subscript on the di- inserted into Eq(43), yields the interaction Hamiltonian of

latational phonon operators Eq. (45) with the coupling constant given in E16).
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